Skip to main content

Advertisement

Log in

Epipolis-laser in situ keratomileusis versus photorefractive keratectomy for the correction of myopia: a meta-analysis

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

It is unclear whether epipolis-laser in situ keratomileusis (Epi-LASIK) has any significant advantage over photorefractive keratectomy (PRK) for correcting myopia. We undertook this meta-analysis of randomized controlled trials and cohort studies to examine possible differences in efficacy, predictability, and side effects between Epi-LASIK and PRK for correcting myopia. A system literature review was conducted in the PubMed, Cochrane Library EMBASE. The statistical analysis was performed by RevMan 5.0 software. The results included efficacy outcomes (percentage of eyes with 20/20 uncorrected visual acuity post-treatment), predictability (proportion of eyes within ±0.5 D of the target refraction), epithelial healing time, and the incidence of significant haze and pain scores after surgery. There are seven articles with total 987 eyes suitable for the meta-analysis. There is no statistical significance in the predictability between Epi-LASIK and PRK, the risk ratio (RR) is 1.03, 95 % confidence interval (CI) [0.92, 1.16], p = 0.18; with respect to efficacy, the odds ratio is 1.43, 95 % CI = [0.85, 2.40], p = 0.56 between Epi-LASIK and PRK, there is no statistical significance either. The epithelial cell layer healing time and the pain scores and the incidence of significant haze showed no significance between these two techniques although more pains can be found in Epi-LASIK than PRK at the early-stage post-operation. According to the above analysis, Epi-LASIK has good efficacy and predictability as PRK. In addition, both techniques have low pain scores and low incidence of significant haze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dastjerdi MH, Soong HK (2002) Lasek (laser subepithelial keratomileusis). Curr Opin Ophthalmol 13(4):261–263

    Article  PubMed  Google Scholar 

  2. Melki SA, Azar DT (2001) LASIK complications: etiology, management, and prevention. Surv Ophthalmol 46(2):95–116

    Article  CAS  PubMed  Google Scholar 

  3. Kuo IC, Lee SM, Hwang DG (2004) Late-onset corneal haze and myopic regression after photorefractive keratectomy (PRK). Cornea 23(4):350–355

    Article  PubMed  Google Scholar 

  4. Loewenstein A, Lipshitz I, Varssano D et al (1997) Complications of excimer laser photorefractive keratectomy for myopia. J Catatact Refract Surg 23(8):1174–1176

    Article  CAS  Google Scholar 

  5. Alió JL, Artola A, Claramonte PJ et al (1998) Complications of photorefractive keratectomy for myopia: two year follow-up of 3000 cases. J Catatact Refract Surg 24(5):619–626

    Article  Google Scholar 

  6. Pallikaris IG, Katsanevaki VJ, Kalyvianaki MI et al (2003) Advances in subepithelial excimer refractive surgery techniques: Epi-LASIK. Curr Opin Ophthalmol 14(4):207–212

    Article  PubMed  Google Scholar 

  7. Sia RK, Coe CD, Edwards JD et al (2012) Visual outcomes after Epi-LASIK and PRK for low and moderate myopia. J Refract Surg 28(1):65

    Article  PubMed  Google Scholar 

  8. Magone MT, Engle AT, Easter TH et al (2012) Flap-off epi-LASIK versus automated epithelial brush in PRK: a prospective comparison study of pain and reepithelialization times. J Refract Surg 28(10):682–689

    Article  PubMed  Google Scholar 

  9. Kim JH, Lee J, Kim JY et al (2010) Early postoperative pain and visual outcomes following epipolis-laser in situ keratomileusis and photorefractive keratectomy. Korean J Ophthalmol 24(3):143–147

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gamaly TO, El Danasoury A, El Maghraby A (2007) A prospective, randomized, contralateral eye comparison of epithelial laser in situ keratomileusis and photorefractive keratectomy in eyes prone to haze. J Refract Surg 23(9):S1015

    PubMed  Google Scholar 

  11. Slade SG, Durrie DS, Binder PS (2009) A prospective, contralateral eye study comparing thin-flap LASIK (sub-Bowman keratomileusis) with photorefractive keratectomy. Ophthalmology 116(6):1075–1082

    Article  PubMed  Google Scholar 

  12. Skevas C, Katz T, Wagenfeld L et al (2013) Subjective pain, visual recovery and visual quality after LASIK, EpiLASIK (flap off) and APRK—a consecutive, non-randomized study. Graefe’s Arch Clin Exp Ophthalmol 251:1–9

    Article  Google Scholar 

  13. O’Doherty M, Kirwan C, O’Keeffe M et al (2007) Postoperative pain following epi-LASIK, LASEK, and PRK for myopia. J Refract Surg 23(2):133–138

    PubMed  Google Scholar 

  14. Reilly CD, Panday V, Lazos V et al (2010) PRK vs LASEK vs Epi-LASIK: a comparison of corneal haze, postoperative pain and visual recovery in moderate to high myopia. Nepal J Ophthalmol 2(2):97–104

    CAS  PubMed  Google Scholar 

  15. Reinstein DZ, Waring GR (2009) Graphic reporting of outcomes of refractive surgery. J Refract Surg 25(11):975–978

    Article  PubMed  Google Scholar 

  16. Checklist of information usually submitted in an investigational device exemption (IDE) application for refractive surgery lasers. Ophthalmic Devices Advisory Panel, Food and Drug Administration (1997). J Refract Surg 13(6): 579–88

  17. Moher D, Jadad AR, Tugwell P (1996) Assessing the quality of randomized controlled trials. Current issues and future directions. Int J Technol Assess Health Care 12(2):195–208

    Article  CAS  PubMed  Google Scholar 

  18. de Benito-Llopis L, Teus MA (2012) Epi-LASIK versus LASEK and PRK. J Cataract Refract Surg 38(4):732

    Article  PubMed  Google Scholar 

  19. Huang SC, Chen HC (2008) Overview of laser refractive surgery. Chang Gung Med J 31(3):237–252

    PubMed  Google Scholar 

  20. Ward MS et al (2013) Photorefractive keratectomy modification of post keratoplasty anisometropic refractive errors. Cornea 32(3):273–279

    Article  PubMed  Google Scholar 

  21. Pallikaris IG et al (2003) Epi-LASIK: comparative histological evaluation of mechanical and alcohol-assisted epithelial separation. J Cataract Refract Surg 29(8):1496–1501

    Article  PubMed  Google Scholar 

  22. Sosne G et al (2010) Thymosin beta4 and corneal wound healing: visions of the future. Ann NY Acad Sci 1194:190–198

    Article  CAS  PubMed  Google Scholar 

  23. Salomao MQ, Wilson SE (2009) Corneal molecular and cellular biology update for the refractive surgeon. J Refract Surg 25(5):459–466

    Article  PubMed Central  PubMed  Google Scholar 

  24. Corbett MC et al (1996) An in vivo investigation of the structures responsible for corneal haze after photorefractive keratectomy and their effect on visual function. Ophthalmology 103(9):1366–1380

    Article  CAS  PubMed  Google Scholar 

  25. Braunstein RE et al (1996) Objective measurement of corneal light scattering after excimer laser keratectomy. Ophthalmology 103(3):439–443

    Article  CAS  PubMed  Google Scholar 

  26. Rajan MS et al (2006) Effects of ablation diameter on long-term refractive stability and corneal transparency after photorefractive keratectomy. Ophthalmology 113(10):1798–1806

    Article  PubMed  Google Scholar 

  27. O’Brart DP et al (1995) The effects of ablation diameter on the outcome of excimer laser photorefractive keratectomy. A prospective, randomized, double-blind study. Arch Ophthalmol 113(4):438–443

    Article  PubMed  Google Scholar 

  28. Corbett MC et al (1996) Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy. Br J Ophthalmol 80(3):224–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Moller-Pedersen T et al (1998) Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea 17(6):627–639

    Article  CAS  PubMed  Google Scholar 

  30. Netto MV et al (2006) Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res 82(5):788–797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Long Q et al (2006) Correlation between TGF-beta1 in tears and corneal haze following LASEK and epi-LASIK. J Refract Surg 22(7):708–712

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflicts of Interest

None of the author has a financial or proprietary interest in any material or method mentioned.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Wang, Y. & Xu, L. Epipolis-laser in situ keratomileusis versus photorefractive keratectomy for the correction of myopia: a meta-analysis. Int Ophthalmol 35, 757–763 (2015). https://doi.org/10.1007/s10792-015-0109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-015-0109-z

Keywords

Navigation