Skip to main content

Advertisement

Log in

A comprehensive review of diagnostic imaging technologies to evaluate the retina and the optic disk

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Ophthalmic imaging has undergone a revolution over the past 20 years with increasingly efficient and high-definition modalities now available. The use of wide-field retinal angiography, fundus autofluorescence, state-of-the-art spectral domain, and enhanced depth imaging optical coherence tomography has proven to be effective in this field. This comprehensive review is devoted to retinal and optic disk imaging modalities and their clinical implications. It is based on the published literature in the field of ophthalmic imaging with a focus on recent advances. Ophthalmic imaging plays a crucial role in the management of patients with both isolated retinal disease and systemic diseases with ocular manifestations. Evolving technology enables imaging of ocular disease in vivo, facilitating objective assessment of disease progression and response to treatment. These latest technical improvements in ophthalmic imaging are now a part of standard ophthalmic assessment in academic centers and most private practices. In the coming years, further advances may improve diagnostic sensitivity and enable cost-effective screening of large populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Referencess

  1. Webb RH, Hughes GW (1981) Scanning laser ophthalmoscope. IEEE Trans Biomed Eng 28:488–492

    Article  CAS  PubMed  Google Scholar 

  2. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saine P, Tyler M (1997) Ophthalmic photography. A textbook of retinal photography, angiography and electronic imaging. Twin Chimney Publishing, Boston

    Google Scholar 

  4. Detry-Morel M, Zeyen T, Kestelyn P, Collignon J, Goethals M (2004) Belgian Glaucoma Society. Screening for glaucoma in a general population with the non-mydriatic fundus camera and the frequency doubling perimeter. Eur J Ophthalmol 14(5):387–393

    CAS  PubMed  Google Scholar 

  5. Timothy J (2009) Bennett, Chris J Barry. Ophthalmic imaging today: an ophthalmic photographer’s viewpoint—a review. Clin Exp Ophthalmol 37:2–13

    Article  Google Scholar 

  6. Diamond JP, McKinnon M, Barry C et al (1998) Nonmydriatic fundus photography: a viable alternative to fundoscopy for indentification of diabetic retinopathy in an aboriginal population in rural Western Australia? Aust N Z J Ophthalmol 26:109–115

    Article  CAS  PubMed  Google Scholar 

  7. Vogt A (1925) Die Ophthalmoskopie im rotfreiem licht. GraefSaemisch Handbuch der gesamten Augenheilkunde, vol 3. Springer, Berlin

    Google Scholar 

  8. Behrendt T, Slipakoff E (1976) Spectral reflectance photography. Int Ophthalmol Clin 16:95–100

    Article  CAS  PubMed  Google Scholar 

  9. Lin DY, Blumenkranz MS, Brothers RJ, Grosvenor DM (2002) The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol 134(2):204–213

    Article  PubMed  Google Scholar 

  10. Ciardella A, Brown D (2007) Wide field imaging. In: Agarwal A (ed) Fundus fluorescein and indocyanine green angiography: a textbook and Atlas. Slack Incorporated, New York, pp 79–83

    Google Scholar 

  11. Witmer MT, Parlitsis G, Patel S et al (2013) Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis noncontact ultra-widefield module versus the Optos Optomap. Clin Ophthalmol 7:389–394

    Article  PubMed Central  PubMed  Google Scholar 

  12. Early Treatment Diabetic Retinopathy Study Investigators (1991) Early treatment diabetic retinopathy study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology 98(5 Suppl):741–756

    Google Scholar 

  13. Witmer MT, Kiss S (2013) Wide-field imaging of the retina. Surv Ophthalmol 58:143–154

    Article  PubMed  Google Scholar 

  14. Ilginis T, Clarke J, Patel PJ (2014) Ophthalmic imaging. Br Med Bull 111(1):77–88

    Article  PubMed  Google Scholar 

  15. Leder HA, Campbell JP, Sepah YJ et al (2013) Ultra-wide-field retinal imaging in the management of noninfectious retinal vasculitis. J Ophthalmic Inflamm Infect 3:1–6

    Article  Google Scholar 

  16. Campbell JP, Leder HA, Sepah YJ et al (2013) Wide-field retinal imaging in the management of noninfectious posterior uveitis. Am J Ophthalmol 154:908–911

    Article  Google Scholar 

  17. Manivannan A, Plskova J, Farrow A et al (2005) Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol 140:525–527

    Article  PubMed  Google Scholar 

  18. Fiberg TR, Forrester JV (2004) Ultrawide angle (200°+) fluorescein angiography using a modified Optos Panoramic200TM Imaging System. Invest Ophthalmol Vis Sci 45: ARVO E-Abstract 3001

  19. Friberg TR, Gupta A, Yu J et al (2008) Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems. Ophthalmic Surg Lasers Imaging 39:304–311

    Article  PubMed  Google Scholar 

  20. Neubauer AS, Kernt M, Haritoglou C et al (2008) Nonmydriatic screening for diabetic retinopathy by ultra-widefield scanning laser ophthalmoscopy (Optomap). Graefes Arch Clin Exp Ophthalmol 246:229–235

    Article  PubMed  Google Scholar 

  21. Oliver SCN, Schwartz SD (2010) Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography. Semin Ophthalmol 25:27–33

    Article  PubMed  Google Scholar 

  22. Prasad PS, Oliver SCN, Coffee RE et al (2010) Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion. Ophthalmology 117:780–784

    Article  PubMed  Google Scholar 

  23. Kelly JP, Weiss AH, Zhou Q et al (2003) Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope. Arch Ophthalmol 121:391–396

    Article  PubMed  Google Scholar 

  24. Wessel MW, Aaker GD, Parlitsis G et al (2012) Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina 32:785–791

    Article  PubMed  Google Scholar 

  25. Muqit MM, Marcellino GR, Henson DB et al (2013) Optos-guided pattern scan laser (pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. Acta phthalmol 91(3):251–258

    Article  Google Scholar 

  26. Reddy S, Shwartz SD (2009) Ultra wide field fluorescein angiography guided targeted retinal photocoagulation. Semin Ophthalmol 29:9–14

    Article  Google Scholar 

  27. Patel M, Kiss S (2014) Ultra-wide-field fluorescein angiography in retinal disease. Curr Opin Ophthalmol 25(3):213–220

    Article  PubMed  Google Scholar 

  28. Tsui I, Franco-Cardenas V, Hubschman J-P et al (2012) Ultra wide field fluorescein angiography can detect macular pathology in central retinal vein occlusion. Ophthalmic Surg Lasers Imaging 43:257–262

    Article  PubMed  Google Scholar 

  29. Spaide RF (2011) Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography. Retina 31:829–837

    Article  PubMed  Google Scholar 

  30. Spaide RF (2013 Jan) Prospective study of peripheral panretinal photocoagulation of areas of nonperfusion in central retinal vein occlusion. Retina 33(1):56–62

    Article  PubMed  Google Scholar 

  31. Singer M, Colin S, Tan CS, Bell D (2014) Are of peripheral retinal non perfusion and treatment response in branch retinal vein occlusion. Retina 34:1736–1742

    Article  PubMed  Google Scholar 

  32. Kaines A, Tsui I, Sarraf D, Schwartz S (2009) The use of ultra wide field fluorescein angiography in evaluation and management of uveitis. Semin Ophthalmol 24(1):19–24

    Article  PubMed  Google Scholar 

  33. Tsui I, Kaines A, Schwartz S (2009) Patterns of periphlebitis in intermediate uveitis using ultra wide field fluorescein angiography. Semin Ophthalmol 24:29–33

    Article  PubMed  Google Scholar 

  34. Mudvari SS, Virasch VV, Singa RM et al (2010) Ultra-wide-field imaging for cytomegalovirus retinitis. Ophthalmic Surg Lasers Imaging 41:311–315

    Article  PubMed  Google Scholar 

  35. Cho M, Kiss S (2011) Detection and monitoring of sickle cell retinopathy using ultra wide-field color photography and fluorescein angiography. Retina 31:738–747

    PubMed  Google Scholar 

  36. Reeves GM, Kumar N, Beare NA (2013) Use of Staurenghi lens angiography in the management of posterior uveitis. Acta Ophthalmol 91(1):48

    Article  PubMed  Google Scholar 

  37. Mackenzie PJ, Russell M, Ma PE et al (2007) Sensitivity and specificity of the Optos Optomap for detecting peripheral retinal lesions. Retina 27:1119–1124

    Article  PubMed  Google Scholar 

  38. Lara-Medina J, Ispa-Callen MC, Gonzalez-Del-Valle F et al (2009) Peripheral vitreoretinal traction exploration by staurenghi 230 lens and HRA-II. Arch Soc Esp Oftalmol 84:625–630

    Article  CAS  PubMed  Google Scholar 

  39. Bonnay G, Nguyen F, Meunier I, Ducasse A, Hamel C, Arndt C (2011) Screening for retinal detachment using wide-field retinal imaging]. J Fr Ophtalmol 34(7):482–485

    Article  CAS  PubMed  Google Scholar 

  40. Mukherjee AN, Watts P, Al-Madfai H et al (2006) Impact of retinopathy of prematurity screening examination on cardiorespiratory indices: a comparison of indirect ophthalmoscopy and retcam imaging. Ophthalmology 113(9):1547–1552

    Article  PubMed  Google Scholar 

  41. Tsui I, Franco-Cardenas V, Hubschman J-P et al (2013) Pediatric retinal conditions imaged by ultra wide field fluorescein angiography. Ophthalmic Surg Lasers Imaging 44:59–67

    Article  Google Scholar 

  42. Early Treatment For Retinopathy Of Prematurity Cooperative Group (2003) Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol 121:1684–1689

    Article  CAS  PubMed  Google Scholar 

  43. Ells AL, Holmes JM, Astle WF et al (2003) Telemedicine approach to screening for severe retinopathy of prematurity: a pilot study. Ophthalmology 110:2113–2117

    Article  PubMed  Google Scholar 

  44. Dai S, Chow K, Vincent A (2011) Efficacy of wide-field digital retinal imaging for retinopathy of prematurity screening. Clin Experiment Ophthalmol 39:23–29

    Article  CAS  PubMed  Google Scholar 

  45. Dhaliwal C, Wright E, Graham C et al (2009) Wide-field digital retinal imaging versus binocular indirect ophthalmoscopy for retinopathy of prematurity screening: a two-observer prospective, randomised comparison. Br J Ophthalmol 93:355–359

    Article  CAS  PubMed  Google Scholar 

  46. Lorenz B, Spasovska K, Elflein H et al (2009) Wide-field digital imaging based telemedicine for screening for acute retinopathy of prematurity (ROP). Six-year results of a multicenter field study. Graefes Arch Clin Exp Ophthalmol 247:1251–1262

    Article  PubMed Central  PubMed  Google Scholar 

  47. Schwartz SD, Harrison SA, Ferrone PJ et al (2000) Telemedical evaluation and management of retinopathy of prematurity using a fiberoptic digital fundus camera. Ophthalmology 107:25–28

    Article  CAS  PubMed  Google Scholar 

  48. Scott KE, Kim DY, Wang L et al (2008) Telemedical diagnosis of retinopathy of prematurity intraphysician agreement between ophthalmoscopic examination and image-based interpretation. Ophthalmology 115:1222–1228

    Article  PubMed  Google Scholar 

  49. Kang KB, Wessel MM, Tong J et al (2013) Ultra-wide field imaging for the management pediatric retinal diseases. J Pediatr Ophthalmol Strabismus 50:282–288

    Article  PubMed  Google Scholar 

  50. Coffee RE, Jain A, McCannel TA (2009) Ultra wide–field imaging of choroidal metastasis secondary to primary breast cancer. Semin Ophthalmol 24:34–36

    Article  PubMed  Google Scholar 

  51. Shields CL, Materin M, Shields JA (2003) Panoramic imaging of the ocular fundus. Arch Ophthalmol 121:1603–1607

    Article  PubMed  Google Scholar 

  52. Pe’er J, Sancho C, Cantu J et al (2006) Measurement of choroidal melanoma basal diameter by wide-angle digital fundus camera: a comparison with ultrasound measurement. Ophthalmologica 220:194–197

    Article  PubMed  Google Scholar 

  53. Shields CL, Shields JA, Kiratli H et al (1995) Risk factors for growth and metastasis of small choroidal melanocytic lesions. Ophthalmology 102:1351–1356

    Article  CAS  PubMed  Google Scholar 

  54. Yuan A, Kaines A, Jain A et al (2010) Ultra-wide-field and autofluorescence imaging of choroidal dystrophies. Ophthalmic Surg Lasers Imaging 41:e1–e5

    PubMed  Google Scholar 

  55. Strouthidis NG, Garway-Heath DF (2008) New developments in Heidelberg retina tomograph for glaucoma. Curr Opin Ophthalmol 19(2):141–148

    Article  PubMed  Google Scholar 

  56. Hoffmann EM, Lamparter J, Schmidt T, Schulze A (2009) Glaucoma diagnosis and follow-up using the Heidelberg Retina Tomograph. Ophthalmologe 106(8):687–688, 690–695

  57. Dascalu AM, Alexandrescu C, Pascu R, Ilinca R, Popescu V, Ciuluvica R, Voinea L, Celea C (2010) Heidelberg Retina Tomography analysis in optic disks with anatomic particularities. J Med Life 3(4):359–364

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Mulak M, Szumny D, Sieja-Bujewska A, Kubrak M (2012) Heidelberg edge perimeter employment in glaucoma diagnosis--preliminary report. Adv Clin Exp Med 21(5):665–670

    PubMed  Google Scholar 

  59. Chou B (2003) Limitations of the panoramic 200 Optomap. Optom Vis Sci 80:671–672

    Article  PubMed  Google Scholar 

  60. Bonnay G, Nguyen F, Meunier I et al (2011) Screening for retinal detachment using wide–field retinal imaging. J Fr Ophtalmol 34:482–485

    Article  CAS  PubMed  Google Scholar 

  61. Dunphy RW, Wentzolf JN, Subramanian M et al (2008) Structural features anterior to the retina represented in panoramic scanning laser fundus images. Ophthalmic Surg Lasers Imaging 39:160–163

    Article  PubMed  Google Scholar 

  62. Seidensticker F, Neubauer AS, Wasfy T et al (2011) Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients. Clin Ophthalmol 5:1667–1671

    PubMed Central  PubMed  Google Scholar 

  63. Witmer MT, Cho M, Favarone G, Chan RV, D’Amico DJ, Kiss S (2012) Ultra-wide-field autofluorescence imaging in non-traumatic rhegmatogenous retinal detachment. Eye (Lond) 26(9):1209–1216

    Article  CAS  Google Scholar 

  64. Meleth D, Sen HN (2012) Use of fundus autofluorescence in the diagnosis and management of uveitis. Ann HSc Int Ophthalmol Clin 52(4):45–54

    Article  Google Scholar 

  65. Miura M, Makita S, Iwasaki T, Yasuno Y (2011) Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo. Invest Ophthalmol Vis Sci. 52:2689–2695

    Article  PubMed  Google Scholar 

  66. Yenerel NM, Kucumen B, Gorgun E, Dinc UA (2008) Atypical presentation of multiple evanescent white dot syndrome (MEWDS). Ocul Immunol Inflamm 16(3):113–115

    Article  PubMed  Google Scholar 

  67. Haen SP, Spaide RF (2008) Fundus autofluorescence in multifocal choroiditis and panuveitis. Am J Ophthalmol 145(5):847–853

    Article  PubMed  Google Scholar 

  68. Koizumi H, Pozzoni MC, Spaide RF (2008) Fundus autofluorescence in birdshot chorioretinopathy. Ophthalmology 115(5):e15–e20

    Article  PubMed  Google Scholar 

  69. Koizumi H, Maruyama K, Kinoshita S (2010) Blue light and near-infrared fundus autofluorescence in acute Vogt-Koyanagi-Harada disease. Br J Ophthalmol 94(11):1499–1505

    Article  PubMed  Google Scholar 

  70. Yeh S, Forooghian F, Wong WT, Faia LJ, Cukras C, Lew JC, Wroblewski K, Weichel ED, Meyerle CB, Sen HN, Chew EY, Nussenblatt RB (2010) Fundus autofluorescence imaging of the white dot syndromes. Arch Ophthalmol 128(1):46–56

    Article  PubMed Central  PubMed  Google Scholar 

  71. Puliafito CA, Hee MR, Lin CP et al (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229

    Article  CAS  PubMed  Google Scholar 

  72. Massin P, Allouch C, Haouchine B et al (2000) Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery. Am J Ophthalmol 130:732–739

    Article  CAS  PubMed  Google Scholar 

  73. Wilkins JR, Puliafito CA, Hee MR et al (1996) Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103:2142–2151

    Article  CAS  PubMed  Google Scholar 

  74. Hee MR, Izatt JA, Swanson EA et al (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113:325–332

    Article  CAS  PubMed  Google Scholar 

  75. Otani T, Kishi S, Maruyama Y (1999) Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 127:688–693

    Article  CAS  PubMed  Google Scholar 

  76. Potsaid B, Baumann B, Huang D et al (2010) Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000–400,000 axial scans per second. Opt Express 18:20029–20048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Jaffe GJ, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137:156–169

    Article  PubMed  Google Scholar 

  78. Hirakawa H, Iijima H, Gohdo T et al (1999) Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa. Am J Ophthalmol 128:185–191

    Article  CAS  PubMed  Google Scholar 

  79. Forooghian F, Cukras C, Meyerle CB et al (2008) Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest Ophthalmol Vis Sci 49:4290–4296

    Article  PubMed Central  PubMed  Google Scholar 

  80. Scott IU, VanVeldhuisen PC, Oden NL et al (2011) Standard Care versus Corticosteroid for REtinal Vein Occlusion Study Investigator Group. Baseline predictors of visual acuity and retinal thickness outcomes in patients with retinal vein occlusion: Standard Care Versus Corticosteroid for retinal Vein Occlusion Study report 10. Ophthalmology 118:345–352

    Article  PubMed Central  PubMed  Google Scholar 

  81. Hoeh AE, Ruppenstein M, Ach T et al (2010) OCT patterns of macular edema and response to bevacizumab therapy in retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 248:1567–1572

    Article  CAS  PubMed  Google Scholar 

  82. Vukicevic M, Gin T, Al-Qureshi S (2012) Prevalence of optical coherence tomography diagnosed post-operative cystoid macular oedema in patients following uncomplicated phacoemulsification cataract surgery. Clin Exp Ophthalmol 40:282–287

    Article  Google Scholar 

  83. Gaucher D, Tadayoni R, Erginay A et al (2005) Optical coherence tomography assessment of the vitreoretinal relationship in diabetic macular edema. Am J Ophthalmol 139:807–813

    Article  PubMed  Google Scholar 

  84. Regatieri CV, Branchini L, Carmody J et al (2012) Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina 32:563–568

    Article  PubMed Central  PubMed  Google Scholar 

  85. Esmaeelpour M, Povazay B, Hermann B et al (2011) Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 52:5311–5316

    Article  PubMed  Google Scholar 

  86. Hassenstein A, Bialasiewicz AA, Richard G (2000) Optical coherence tomography in uveitis patients. Am J Ophthalmol 130:669–670

    Article  CAS  PubMed  Google Scholar 

  87. Markomichelakis NN, Halkiadakis I, Pantelia E et al (2004) Patterns of macular edema in patients with uveitis: qualitative and quantitative assessment using optical coherence tomography. Ophthalmology 111:946–953

    Article  PubMed  Google Scholar 

  88. Iannetti L, Accorinti M, Liverani M et al (2008) Optical coherence tomography for classification and clinical evaluation of macular edema in patients with uveitis. Ocul Immunol Inflamm 16:155–160

    Article  PubMed  Google Scholar 

  89. Sandhu SS, Talks SJ (2005) Correlation of optical coherence tomography, with or without additional colour fundus photography, with stereo fundus fluorescein angiography in diagnosing choroidal neovascular membranes. Br J Ophthalmol 89:967–970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Khurana RN, Dupas B, Bressler NM (2010) Agreement of time-domain and spectral domain optical coherence tomography with fluorescein leakage from choroidal neovascularization. Ophthalmology 117:1376–1380

    Article  PubMed  Google Scholar 

  91. Krebs I, Ansari-Shahrezaei S, Goll A et al (2008) Activity of neovascular lesions treated with bevacizumab: comparison between optical coherence tomography and fluorescein angiography. Graefes Arch Clin Exp Ophthalmol 246:811–815

    Article  CAS  PubMed  Google Scholar 

  92. Malamos P, Sacu S, Georgopoulos M et al (2009) Correlation of high-definition optical coherence tomography and fluorescein angiography imaging in neovascular macular degeneration. Invest Ophthalmol Vis Sci 50:4926–4933

    Article  PubMed  Google Scholar 

  93. Mirza RG, Johnson MW, Jampol LM (2007) Optical coherence tomography use in evaluation of the vitreoretinal interface: a review. Surv Ophthalmol 52:397–421

    Article  PubMed  Google Scholar 

  94. Tsui I, Bajwa A, Franco-Cardenas V, Pan CK, Kim HY, Schwartz SD (2013) Peripheral fluorescein angiographic findings in fellow eyes of patients with branch retinal vein occlusion. Int J Inflamm 2013. doi: 10.1155/2013/464127

  95. Haouchine B, Massin P, Tadayoni R et al (2004) Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol 138:732–739

    Article  PubMed  Google Scholar 

  96. Duker JS, Kaiser PK, Binder S et al (2013) The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619

    Article  PubMed  Google Scholar 

  97. Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473

    Article  PubMed  Google Scholar 

  98. Kim SW, Oh J, Kwon SS et al (2011) Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina 31:1904–1911

    Article  PubMed  Google Scholar 

  99. Manjunath V, Fujimoto JG, Duker JS (2010) Cirrus HD-OCT high definition imaging is another tool available for visualization of the choroid and provides agreement with the finding that the choroidal thickness is increased in central serous chorioretinopathy in comparison to normal eyes. Retina 30:1320–1321

    Article  PubMed Central  PubMed  Google Scholar 

  100. Maruko I, Iida T, Sugano Y et al (2010) Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 117:1792–1799

    Article  PubMed  Google Scholar 

  101. Pryds A, Larsen M (2012) Choroidal thickness following extrafoveal photodynamic treatment with verteporfin in patients with central serous chorioretinopathy. Acta Ophthalmol 90:738–743

    Article  CAS  PubMed  Google Scholar 

  102. Mwanza J-C, Budenz DL, Godfrey DG et al (2014) Diagnostic performance of optical coherence tomography ganglion cell–inner plexiform layer thickness measurements in early glaucoma. Ophthalmology 121:849–854

    Article  PubMed  Google Scholar 

  103. Jeoung JW, Choi YJ, Park KH et al (2013) Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:4422–4429

    Article  PubMed  Google Scholar 

  104. Leite MT, Rao HL, Zangwill LM et al (2011) Comparison of the diagnostic accuracies of the spectralis, cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 118:1334–1339

    PubMed  Google Scholar 

  105. Wang B, Nevins JE, Nadler Z et al (2013) In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci 54:8270–8274

    Article  PubMed Central  PubMed  Google Scholar 

  106. Wong JJ, Chen TC, Shen LQ, Pasquale LR (2012) Macular imaging for glaucoma using spectral-domain optical coherence tomography: a review. Semin Ophthalmol 27(5–6):160–166

    Article  PubMed  Google Scholar 

  107. Spaide RF, Lee JK, Klancnik JK Jr et al (2003) Optical coherence tomography of branch retinal vein occlusion. Retina 23:343–347

    Article  PubMed  Google Scholar 

  108. Torres VL, Brugnoni N, Kaiser PK, Singh AD (2011) Optical coherence tomography enhanced depth imaging of choroidal tumors. Am J Ophthalmol 151:586–593

    Article  PubMed  Google Scholar 

  109. Freton A, Finger PT (2012) Spectral domain-optical coherence tomography analysis of choroidal osteoma. Br J Ophthalmol 96:224–228. [PubMed: 21527415] This study describes the features of choroidal osteoma using SD-OCT. It demonstrates that SD-OCT provides deeper and higher resolution images of choroidal osteoma when compared with TD-OCT

  110. Izatt JA, Kulkarni MD, Yazdanfar S et al (1997) In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett 22:1439–1441

    Article  CAS  PubMed  Google Scholar 

  111. Leitgeb R, Schmetterer L, Drexler W et al (2003) Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt Express 11:3116–3121

    Article  PubMed  Google Scholar 

  112. White B, Pierce M, Nassif N et al (2003) In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography. Opt Express 11:3490–3497

    Article  PubMed  Google Scholar 

  113. Wang Y, Lu A, Gil-Flamer J et al (2009) Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol 93:634–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Leitgeb RA, Schmetterer L, Hitzenberger CK et al (2004) Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. Opt Lett 29:171–173

    Article  PubMed  Google Scholar 

  115. Makita S, Hong Y, Yamanari M et al (2006) Optical coherence angiography. Opt Express 14:7821–7840

    Article  PubMed  Google Scholar 

  116. Giuliari G, Hinkle DM, Foster CS (2009) The spectrum of fundus autofluorescence findings in birdshot chorioretinopathy. J Ophthalmol 2009:567693

    Article  PubMed Central  PubMed  Google Scholar 

  117. Torres VLL, Brugnoni N, Kaiser PK, Singh AD (2011) Optical coherence tomography enhanced depth imaging of choroidal tumors. Am J Ophthalmol 151(4):586.e582–593.e582

    Article  Google Scholar 

  118. Kim JT, Lee DH, Joe SG, Kim J-G, Yoon YH (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Investig Ophthalmol Vis Sci 54(5):3378–3384

    Article  Google Scholar 

  119. Park SC, de Moraes CGV, Teng CC, Tello C, Liebmann JM, Ritch R (2012) Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology 119(1):3–9

    Article  PubMed  Google Scholar 

  120. Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118(5):840–845

    Article  PubMed  Google Scholar 

  121. Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF (2010) Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 117(9):1792–1799

    Article  PubMed  Google Scholar 

  122. Spaide RF (2009) Age-related choroidal atrophy. Am J Ophthalmol 147(5):801–810

    Article  PubMed  Google Scholar 

  123. Maruko I, Iida T, Sugano Y et al (2011) Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease. Retina 31(3):510–517

    Article  PubMed  Google Scholar 

  124. Nakayama M, Keino H, Okada AA et al (2012) Enhanced depth imaging optical coherence tomography of the choroid in Vogt–Koyanagi–Harada disease. Retina 32(10):2061–2069

    Article  PubMed  Google Scholar 

  125. Modi YS, Epstein A, Bhaleeya S, Harbour JW, Albini T (2013) Multimodal imaging of sarcoid choroidal granulomas. J Ophthalmic Inflamma Infect 3(1):58

    Article  Google Scholar 

  126. Keane PA, Allie M, Turner SJ et al (2013) Characterization of birdshot chorioretinopathy using extramacular enhanced depth optical coherence tomography. JAMA Ophthalmol 131(3):341–350

    Article  PubMed  Google Scholar 

  127. Goldenberg D, Goldstein M, Loewenstein A, Habot-Wilner Z (2013) Vitreal, retinal, and choroidal findings in active and scarred toxoplasmosis lesions: a prospective study by spectral domain optical coherence tomography. Graefe’s Arch Clin Exp Ophthalmol 251(8):2037–2045

    Article  Google Scholar 

  128. Lingappan A, Wykoff CC, Albini TA et al (2012) Endogenous fungal endophthalmitis: causative organisms, management strategies, and visual acuity outcomes. Am J Ophthalmol 153(1):162.e161–166.e161

    Article  Google Scholar 

  129. Han S, Sarunic MV, Wu J et al (2008) Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection. J Biomed Opt 13:020505

    Article  PubMed  Google Scholar 

  130. Lu CD, Kraus MF, Potsaid B et al (2014) Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express 5:293–311

    Article  PubMed Central  Google Scholar 

  131. Grulkowski I, Liu JJ, Potsaid B et al (2012) Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed Opt Express 3:2733–2751

    Article  PubMed Central  PubMed  Google Scholar 

  132. Schwartz DM, Fingler J, Kim DY et al (2014) Phase-variance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology 121:180–187

    Article  PubMed Central  PubMed  Google Scholar 

  133. Livingstone I, Bastawrous A, Giardini ME et al (2014) Peek:portable eye examination kit. The Smartphone ophthalmoscope. ARVO 2014 poster 1612-D0027

  134. Ducrey N, Pomerantzeff O, Schepens CL et al (1977) Clinical trials with the Equator-plus camera. Am J Ophthalmol 84:840–846

    Article  CAS  PubMed  Google Scholar 

  135. Pomerantzeff O (1975) Equator-plus camera. Invest Ophthalmol 14:401–406

    CAS  PubMed  Google Scholar 

  136. Shields CL, Materin M, Epstein J, Shields JA (2003) Wide angle imaging of the ocular fundus. Rev Ophthalmol 10:2. (http://www.reviewofophthalmology.com/content/d/retinal_insider/i/1346/c/25778/)

  137. Staurenghi G, Viola F, Mainster MA et al (2005) Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol 123:244–252

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asima Bajwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajwa, A., Aman, R. & Reddy, A.K. A comprehensive review of diagnostic imaging technologies to evaluate the retina and the optic disk. Int Ophthalmol 35, 733–755 (2015). https://doi.org/10.1007/s10792-015-0087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-015-0087-1

Keywords

Navigation