Evaluation of pupillary response to light in patients with glaucoma: a study using computerized pupillometry

Abstract

The aim of this study was to evaluate pupillary response to light stimulation in patients with different stages of glaucoma using computerized pupillometry. We conducted a retrospective study on a group of 44 glaucoma patients who had undergone complete ophthalmological examination, visual field test (Humphrey SITA Standard 24-2) and monocular dynamic pupillometry (MonCV3 Metrovision). Eyes were classified into stages of glaucoma according to visual field damage using the Glaucoma Staging System 2. A group of 18 healthy subjects, homogeneous for age and sex with glaucoma patients, was used as a control. The following parameters were considered—latency and duration of contraction and dilatation; initial, minimum, maximum, and mean pupil diameter; amplitude of contraction; contraction and dilatation speed; and percent pupil contraction (PPC). PPC and pupil contraction speed and minimum diameter showed covariate correlation with the stages of glaucoma. The control group significantly differed from the stage 3 group in terms of PPC and from the stage 4 group in terms of minimum diameter. There were significant differences between the stage 5 group and stage 1, 2, 3 and control groups. Ordinal logistic regression showed a correlation between pupil contraction speed, minimum diameter, PPC, initial diameter and the stage of glaucoma. The study showed that glaucoma damage is associated with altered values of pupillary response to light. This event may be the consequence of the progressive loss of retinal ganglion cells and their axons induced by glaucoma.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Kawasaki A (1999) Physiology, assessment, and disorders of the pupil. Curr Opin Ophthalmol 10:394–400

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Levatin P, Prasloski PF, Collen MF (1973) The swinging flashlight test in multiphasic screening for eye disease. Can J Ophthalmol 8(2):356–360

    CAS  PubMed  Google Scholar 

  3. 3.

    Kaback MB, Burde RM, Becker B (1976) Relative afferent pupillary defect in glaucoma. Am J Ophthalmol 81:462–468

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Garaci FG, Bolacchi F, Cerulli A et al (2009) Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging. Radiology 252(2):496–501

    PubMed  Article  Google Scholar 

  5. 5.

    Bolacchi F, Garaci FG, Martucci A et al (2012) Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. Invest Ophthalmol Vis Sci 53(7):4191–4196

    PubMed  Article  Google Scholar 

  6. 6.

    Resnikoff S, Pascolini D, Etya’ale D et al (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851

    PubMed Central  PubMed  Google Scholar 

  7. 7.

    Cedrone C, Mancino R, Cerulli A, Cesareo M, Nucci C (2008) Epidemiology of primary glaucoma: prevalence, incidence, and blinding effects. Prog Brain Res 173:3–14

    PubMed  Article  Google Scholar 

  8. 8.

    Grozdanic SD, Betts DM, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM (2003) Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve. Exp Eye Res 77(1):27–33

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Lowenstein O, Loewenfeld I (1958) Electronic pupillography. Arch Ophthalmol 59:352–363

    CAS  Article  Google Scholar 

  10. 10.

    Chen Y, Wyatt HJ, Swanson WH (2005) Pupillary evaluation of retinal asymmetry: development and initial testing of a technique. Vision Res 45(19):2549–2563

    PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    Link B, Jünemann A, Rix R et al (2006) Pupillographic measurements with pattern stimulation: the pupil’s response in normal subjects and first measurements in glaucoma patients. Invest Ophthalmol Vis Sci 47(11):4947–4955

    PubMed  Article  Google Scholar 

  12. 12.

    Scuderi G, Papale A, Nucci C, Cerulli L (1995) Retinal involvement in pigment dispersion syndrome. Int Ophthalmol 19(6):375–378

    PubMed  Article  Google Scholar 

  13. 13.

    Chen Y, Kardon RH (2013) Studying the effect of iris mechanics on the pupillary light reflex using brimonidine-induced anisocoria. Invest Ophthalmol Vis Sci 54(4):2951–2958

    PubMed Central  PubMed  Article  Google Scholar 

  14. 14.

    Wensor MD, McCarty CA, Stanislavsky YL, Livingston PM, Taylor HR (1998) The prevalence of glaucoma in the Melbourne Visual Impairment Project. Ophthalmology 105(4):733–739

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Lamparter J, Russell RA, Schulze A, Schuff AC, Pfeiffer N, Hoffmann EM (2012) Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Invest Ophthalmol Vis Sci 53(12):7553–7559

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Brusini P, Filacorda S (2006) Enhanced glaucoma staging system (GSS 2) for classifying functional damage in glaucoma. J Glaucoma 15(1):40–46

    PubMed  Article  Google Scholar 

  17. 17.

    Hennessy AL, Katz J, Ramakrishnan R et al (2011) The utility of relative afferent pupillary defect as a screening tool for glaucoma: prospective examination of a large population-based study in a south Indian population. Br J Ophthalmol 95(9):1203–1206

    PubMed  Article  Google Scholar 

  18. 18.

    Kalaboukhova L, Fridhammar V, Lindblom B (2007) Relative afferent papillary defect in glaucoma: a pupillometric study. Acta Ophthalmol Scand 85:519–525

    PubMed  Article  Google Scholar 

  19. 19.

    Nucci C, Bari M, Spanò A et al (2008) Potential roles of (endo) cannabinoids in the treatment of glaucoma: from intraocular pressure control to neuroprotection. Prog Brain Res 173:451–464

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Russo R, Berliocchi L, Adornetto A et al (2011) Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis 14(2):e144

    Article  Google Scholar 

  21. 21.

    Nucci C, Morrone L, Rombolà L, Nisticò R, Piccirilli S, Cerulli L (2003) Multifaceted roles of nitric oxide in the lateral geniculate nucleus: from visual signal transduction to neuronal apoptosis. Toxicol Lett 139(2–3):163–173

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Pickard GE, Sollars PJ (2011) Intrinsically photosensitive retinal ganglion cells. Rev Physiol Biochem Pharmacol 162:59–90

    Google Scholar 

  23. 23.

    Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin knockout mice. Science 299:245–247

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Do MT, Yau KW (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90(4):1547–1581

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Jakobs TC, Libby RT, Ben Y, John SW, Masland RH (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2 J mice. J Cell Biol 171:313–325

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Drouyer E, Dkhissi-Benyahya O, Chiquet C et al (2008) Glaucoma alters the circadian timing system. PLoS One 3(12):e3931

    PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Wang HZ, Lu QJ, Wang NL (2008) Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J 121:1015–1019

    PubMed  Google Scholar 

  28. 28.

    de Zavalia N, Plano SA, Fernandez DC et al (2011) Effect of experimental glaucoma on the non-image forming visual system. J Neurochem 117:904–914

    PubMed  Article  Google Scholar 

  29. 29.

    Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A (2011) Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 31(45):16094–16101

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

No author has any financial or commercial interests in the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlo Nucci.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martucci, A., Cesareo, M., Napoli, D. et al. Evaluation of pupillary response to light in patients with glaucoma: a study using computerized pupillometry. Int Ophthalmol 34, 1241–1247 (2014). https://doi.org/10.1007/s10792-014-9920-1

Download citation

Keywords

  • Glaucoma
  • Pupillary light reflex
  • Pupillometry
  • Visual field