Skip to main content

Color vision deficiency in a middle-aged population: the Shahroud Eye Study

Abstract

The aim of this study was to determine the prevalence of color vision defects in the middle-age population of Shahroud, Iran. We selected 6,311 people from the 40- to 64-year-old population through random cluster sampling. Color vision testing was performed with the Farnsworth D-15. Cases with similar and symmetric results in both eyes were classified as hereditary, and those with asymmetric results were considered acquired. Cases that did not conform to standard patterns were classified as unknown category. Of 5,190 respondents (response rate 82.2 %), 5,102 participants underwent the color vision test. Of these, 14.7 % (95 % confidence interval 13.7–15.6) had some type of color vision deficiency. Of the 2,157 male participants, 6.2 % were hereditary and 10.2 % were acquired and of the 2,945 female participants, 3.1 % were hereditary and 10 % were acquired. Hereditary color deficiencies were mostly of the deutan form (63.8 %), and acquired deficiencies were mostly tritan (66.1 %). The prevalence of hereditary and acquired color vision deficiency, as well as different types of red–green and blue–yellow color vision defects significantly increased with age (p < 0.001). In conclusion, the pattern of color vision defects among the middle-aged population of Shahroud was significantly different from that seen in the younger population. This could be due to changes associated with age, gender, medical and ocular conditions, and differences in race and environment. Thus, results of previous examinations and the overall health status should be considered before making any judgment about the status of color vision in middle-aged people.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Lennie P, D’Zmura M (1988) Mechanisms of color vision. Crit Rev Neurobiol 3:333–400

    CAS  PubMed  Google Scholar 

  2. Kochendoerfer GG, Lin SW, Sakmar TP, Mathies RA (1999) How color visual pigments are tuned. Trends Biochem Sci 24:300–305

    CAS  PubMed  Article  Google Scholar 

  3. Lutze M, Pokorny J, Smith VC (2006) Achromatic parvocellular contrast gain in normal and color defective observers: implications for the evolution of color vision. Vis Neurosci 23:611–616

    PubMed  Article  Google Scholar 

  4. Conway BR, Chatterjee S, Field GD, Horwitz GD, Johnson EN, Koida K, Mancuso K (2010) Advances in color science: from retina to behavior. J Neurosci 30:14955–14963

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Swanson WH, Cohen JM (2003) Color vision. Ophthalmol Clin North Am 16:179–203

    PubMed  Article  Google Scholar 

  6. Pease LP (2006) Color vision. In: Benjamin WJ (ed) Borish’s clinical refraction, 2nd edn. Butterworth–Heinemann–Elsevier, St. Louis, pp 289–355

    Chapter  Google Scholar 

  7. Malaspina P, Biondi G, Santillo C (1989) Color blindness (CB) distribution in the male population of Albanian and Croatian communities of Molise, Italy. Gene Geogr 3:53–63

    CAS  PubMed  Google Scholar 

  8. Qian YS, Abudureheman Z, Aximu A, Muhamat P, Yasen G, Aili M, Chu RY (2009) Comparison of congenital color vision deficiencies prevalence between Han and Uygur high-school students. Zhonghua Yan Ke Za Zhi 45:131–134

    PubMed  Google Scholar 

  9. Citirik M, Acaroglu G, Batman C, Zilelioglu O (2005) Congenital color blindness in young Turkish men. Ophthalmic Epidemiol 12:133–137

    PubMed  Article  Google Scholar 

  10. Shah A, Hussain R, Fareed M, Afzal M (2013) Prevalence of red–green color vision defects among Muslim males and females of Manipur, India. Iran J Public Health 42:16–24

    PubMed Central  PubMed  Google Scholar 

  11. Narahari S (1993) Color blindness and natural selection: studies in four nomadic tribal groups from Andhra Pradesh, India. Anthropol Anz 51:169–171

    CAS  PubMed  Google Scholar 

  12. Jorgensen AL, Deeb SS, Motulsky AG (1990) Molecular genetics of X chromosome-linked color vision among populations of African and Japanese ancestry: high frequency of a shortened red pigment gene among Afro-Americans. Proc Natl Acad Sci USA 87:6512–6516

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Rebato E, Calderon R (1990) Incidence of red–green color blindness in the Basque population. Anthropol Anz 48:145–148

    CAS  PubMed  Google Scholar 

  14. Papaconstantinou D, Georgalas I, Kalantzis G et al (2009) Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma. Clin Ophthalmol 3:251–257

    PubMed Central  PubMed  Google Scholar 

  15. Kagami S, Bradshaw SE, Fukumoto M, Tsukui I (2009) Cataracts in airline pilots: prevalence and aeromedical considerations in Japan. Aviat Space Environ Med 80:811–814

    PubMed  Article  Google Scholar 

  16. Thiadens AA, Roosing S, Collin RW et al (2010) Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology 117:825–830

    PubMed  Article  Google Scholar 

  17. Almog Y, Nemet A (2010) The correlation between visual acuity and color vision as an indicator of the cause of visual loss. Am J Ophthalmol 149:1000–1004

    PubMed  Article  Google Scholar 

  18. Feitosa-Santana C, Paramei GV, Nishi M, ltieri M, Costa MF, Ventura DF (2010) Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Color Test. Ophthalmic Physiol Opt 30:717–723

    Google Scholar 

  19. Shah KH, Holland GN, Yu F, Van Natta M, Nusinowitz S (2006) Contrast sensitivity and color vision in HIV-infected individuals without infectious retinopathy. Am J Ophthalmol 142:284–292

    PubMed  Article  Google Scholar 

  20. Muller T, Woitalla D, Peters S, Kohla K, Przuntek H (2002) Progress of visual dysfunction in Parkinson’s disease. Acta Neurol Scand 105:256–260

    CAS  PubMed  Article  Google Scholar 

  21. Syed AB, Armstrong RA, Smith CU (2005) A quantitative analysis of optic nerve axons in elderly control subjects and patients with Alzheimer’s disease. Folia Neuropathol 43:1–6

    PubMed  Google Scholar 

  22. Shuwairi SM, Cronin-Golomb A, McCarley RW, O’Donnell BF (2002) Color discrimination in schizophrenia. Schizophr Res 55:197–204

    PubMed  Article  Google Scholar 

  23. Willmann G, Ivanov IV, Fischer MD, Lahiri S, Pokharel RK, Werner A, Khurana TS (2010) Effects on color discrimination during long term exposure to high altitudes on Mt Everest. Br J Ophthalmol 94:1393–1397

    PubMed  Article  Google Scholar 

  24. Guest M, D’Este C, Attia J et al (2011) Impairment of color vision in aircraft maintenance workers. Int Arch Occup Environ Health 84:723–733

    CAS  PubMed  Article  Google Scholar 

  25. Attarchi MS, Labbafinejad Y, Mohammadi S (2010) Occupational exposure to different levels of mixed organic solvents and color vision impairment. Neurotoxicol Teratol 32:558–562

    CAS  PubMed  Article  Google Scholar 

  26. Ascaso FJ, Cruz N, Del Buey MA, Cristobal JA (2009) An unusual case of cocaine-induced maculopathy. Eur J Ophthalmol 19:880–882

    PubMed  Google Scholar 

  27. Salomao SR, Watanabe SE, Berezovsky A, Motono M (2007) Multifocal electroretinography, color discrimination and ocular toxicity in tamoxifen use. Curr Eye Res 32:345–352

    PubMed  Article  Google Scholar 

  28. Gobba F, Cavalleri A (2003) Color vision impairment in workers exposed to neurotoxic chemicals. Neurotoxicology 24:693–702

    CAS  PubMed  Article  Google Scholar 

  29. Wang C, Tan X, Bi Y et al (2002) Cross-sectional study of the ophthalmological effects of carbon disulfide in Chinese viscose workers. Int J Hyg Environ Health 205:367–372

    CAS  PubMed  Article  Google Scholar 

  30. Campagna D, Stengel B, Mergler D, Limasset JC, Diebold F, Michard D, Huel G (2001) Color vision and occupational toluene exposure. Neurotoxicol Teratol 23:473–480

    CAS  PubMed  Article  Google Scholar 

  31. Nguyen-Tri D, Overbury O, Faubert J (2003) The role of lenticular senescence in age-related color vision changes. Invest Ophthalmol Vis Sci 44:3698–3704

    PubMed  Article  Google Scholar 

  32. Pinckers A (1980) Color vision and age. Ophthalmologica 181:23–30

    CAS  PubMed  Article  Google Scholar 

  33. Modarres M, Mirsamadi M, Peyman GA (1997) Prevalence of congenital color deficiencies in secondary-school students in Tehran. Int Ophthalmol 20:221–222

    CAS  Article  Google Scholar 

  34. Zarrabi Z, Sadighian M (1974) Incidence of color blindness (color defect) among Iranian primary school children. Acta Med Iran 17:70–72

    CAS  PubMed  Google Scholar 

  35. Dargahi H, Einollahi N, Dashti N (2010) Color blindness defect and medical laboratory technologists: unnoticed problems and the care for screening. Acta Med Iran 48:172–177

    PubMed  Google Scholar 

  36. Tabansi PN, Anochie IC, Nkanginieme KE, Pedro-Egbe CN (2008) Screening for congenital color vision deficiency in primary children in Port Harcourt City; teachers’ knowledge and performance. Niger J Med 17:428–432

    CAS  PubMed  Article  Google Scholar 

  37. Ganley JP, Lian MC (1997) Projected color slides as a method for mass screening of red–green color deficient individuals. Ophthalmic Epidemiol 4:213–221

    CAS  PubMed  Article  Google Scholar 

  38. Lanthony P (1978) The desaturated panel D-15. Doc Ophthalmol 46:185–189

    CAS  PubMed  Google Scholar 

  39. Rebato E, Calderon R (1990) Incidence of red–green color blindness in the Basque population. Anthropol Anz 48:145–148

    CAS  PubMed  Google Scholar 

  40. Chia A, Gazzard G, Tong L, Zhang X, Sim EL, Fong A, Mei Saw S (2008) Red–green colour blindness in Singaporean children. Clin Exp Ophthalmol 36:464–467

    Google Scholar 

  41. Reshadat S, Azami N, Ghasemi SR, Almasi A, Azizi A (2012) Color blindness in male drivers referred to Samenol-A’emeh Clinic (2005–2008). J Kermanshah Univ Med Sci 16:421–426

    Google Scholar 

  42. Khalaj M, Barikani A, Mohammadi M (2014) Prevalence of color vision deficiency in Qazvin. Zahedan J Res Med Sci 16:91–93

    Google Scholar 

  43. Alabdelmoneam M (2011) Prevalence of congenital color vision defects in Saudi females of Arab origin. Optometry 82:543–548

    PubMed  Article  Google Scholar 

  44. Birch J (2010) Identification of red–green color deficiency: sensitivity of the Ishihara and American Optical Company (Hard, Rand and Rittler) pseudo-isochromatic plates to identify slight anomalous trichromatism. Ophthalmic Physiol Opt 30:667–671

    PubMed  Article  Google Scholar 

  45. Miyahara E (2008) Errors reading the Ishihara pseudoisochromatic plates made by observers with normal color vision. Clin Exp Optom 91:161–165

    PubMed  Article  Google Scholar 

  46. Cole BL, Lian KY, Lakkis C (2006) The new Richmond HRR pseudoisochromatic test for color vision is better than the Ishihara test. Clin Exp Optom 89:73–80

    PubMed  Article  Google Scholar 

  47. Cole BL, Orenstein JM (2003) Does the Farnsworth D15 test predict the ability to name colors? Clin Exp Optom 86:221–229

    PubMed  Article  Google Scholar 

  48. Cotter SA, Lee DY, French AL (1999) Evaluation of a new color vision test: “color vision testing made easy”. Optom Vis Sci 76:631–636

    CAS  PubMed  Article  Google Scholar 

  49. Dain SJ (2004) Clinical colour vision tests. Clin Exp Optom 87:276–293

    PubMed  Article  Google Scholar 

  50. Baraas RC, Foster DH, Amano K, Nascimento SM (2010) Color constancy of red–green dichromats and anomalous trichromats. Invest Ophthalmol Vis Sci 51:2286–2293

    PubMed Central  PubMed  Article  Google Scholar 

  51. Lawrenson JG, Kelly C, Lawrenson AL, Birch J (2002) Acquired color vision deficiency in patients receiving digoxin maintenance therapy. Br J Ophthalmol 86:1259–1261

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  52. Vu BL, Easterbrook M, Hovis JK (1999) Detection of color vision defects in chloroquine retinopathy. Ophthalmology 106:1799–1803

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This project was supported by Noor Ophthalmology Research Center and Shahroud University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Fotouhi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jafarzadehpur, E., Hashemi, H., Emamian, M.H. et al. Color vision deficiency in a middle-aged population: the Shahroud Eye Study. Int Ophthalmol 34, 1067–1074 (2014). https://doi.org/10.1007/s10792-014-9911-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-014-9911-2

Keywords

  • Color vision deficiency
  • Middle age
  • Hereditary
  • Acquired
  • Iran