Skip to main content

Advertisement

Log in

Unilateral visual loss due to ischaemic injury in the right calcarine region: a functional magnetic resonance imaging and diffusion tension imaging follow-up study

  • Case Report
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

To study the functional recovery of a patient with cerebrovascular injury using combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). A 24-year-old woman with left hemianopsia underwent fMRI and DTI in a 1.5-tesla machine both in the acute phase and 1 month after an ischaemic stroke involving the right calcarine cortex. Acute-phase fMRI demonstrated that peripheral left visual field stimulation did not activate the right primary visual cortex, whereas stimulation 1 month later activated the visual cortex bilaterally. Analysis of acute-phase DTI data disclosed that a reduction of fractional anisotropy in the right optic radiation had almost resolved after 1 month. Fibre direction was normal at either time point. fMRI and DTI can demonstrate functional damage and recovery in patients with neuro-ophthalmological lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Jenkins WM, Merzenich MM (1987) Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res 71:249–266

    Article  PubMed  CAS  Google Scholar 

  2. Seitz RJ, Butefisch CM, Kleiser R, Homberg V (2004) Reorganisation of cerebral circuits in human ischemic brain disease. Restor Neurol Neurosci 22:207–229

    PubMed  Google Scholar 

  3. Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129:791–808

    Article  PubMed  Google Scholar 

  4. Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 33:181–189

    Article  PubMed  CAS  Google Scholar 

  5. Rossini PM, Altamura C, Ferretti A et al (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127:99–110

    Article  PubMed  CAS  Google Scholar 

  6. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2002) Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke 33:103–109

    Article  PubMed  CAS  Google Scholar 

  7. Murata Y, Sakatani K, Hoshino T, Fujiwara N, Kano T et al (2006) Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients. Stroke 37:2514

    Article  PubMed  Google Scholar 

  8. Bonaiuti D, Grimaldi M (2007) Neuroimaging: a new challenge in neurorehabilitation of stroke patients. Eura Medicophys 43:215–219

    PubMed  CAS  Google Scholar 

  9. Wieshmann UC, Krakow K, Symms MR, Parker GJM, Clark CA, Barker GJ, Shorvon SD (2001) Combined functional magnetic resonance imaging and diffusion tensor imaging demonstrate widespread modified organisation in malformation of cortical development. J Neurol Neurosurg Psychiatry 70:521–523

    Article  PubMed  CAS  Google Scholar 

  10. Ward NS (2007) Future perspectives in functional neuroimaging in stroke recovery. Eura Medicophys 43:285–294

    PubMed  CAS  Google Scholar 

  11. Cramer SC, Nelles G, Benson RR, Kaplan JD et al (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527

    PubMed  CAS  Google Scholar 

  12. Cramer SC, Nelles G, Judith D, Schaechter JD et al (2001) A functional MRI study of three motor tasks in the evaluation of stroke recovery. Neurorehabil Neural Repair 15:1–8

    Article  PubMed  CAS  Google Scholar 

  13. Bütefisch CM, Kleiser R, Seitz RJ (2006) Post-lesional cerebral reorganisation: evidence from functional neuroimaging and transcranial magnetic stimulation. J Physiol Paris 99:437–454

    Article  PubMed  Google Scholar 

  14. Carusone LM, Srinivasan J, Gitelman DR, Mesulam MM, Parrish TB (2002) Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging. Am J Neuroradiol 23:1222–1228

    PubMed  Google Scholar 

  15. Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29:112–122

    PubMed  CAS  Google Scholar 

  16. Binkofski F, Seitz RJ (2004) Modulation of the BOLD-response in early recovery from sensorimotor stroke. Neurology 63:1223–1229

    PubMed  Google Scholar 

  17. Krainik A, Hund-Georgiadis M, Zysset S, von Cramon Y (2005) Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke 36:1146

    Article  PubMed  Google Scholar 

  18. Schmid LM, Rosa MG, Calford MB, Ambler JS (1996) Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions. Cereb Cortex 6:388–405

    Article  PubMed  CAS  Google Scholar 

  19. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107

    Article  PubMed  Google Scholar 

  20. Dougherty RF, Ben-Shachar M, Bammer R, Brewer AA, Wandell BA (2005) Functional organization of human occipital–callosal fiber tracts. Proc Natl Acad Sci USA 102:7350–7355

    Article  PubMed  CAS  Google Scholar 

  21. Yamada K, Mori S, Nakamura H et al (2003) Fiber-tracking method reveals sensorimotor pathway involvement in stroke patients. Stroke 34:159–162

    Article  Google Scholar 

  22. Bridge H, Thomas O, Jbabdi S, Cowey A (2008) Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 131:1433–1444

    Article  PubMed  Google Scholar 

  23. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  24. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Polonara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polonara, G., Salvolini, S., Fabri, M. et al. Unilateral visual loss due to ischaemic injury in the right calcarine region: a functional magnetic resonance imaging and diffusion tension imaging follow-up study. Int Ophthalmol 31, 129–134 (2011). https://doi.org/10.1007/s10792-011-9420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-011-9420-5

Keywords

Navigation