Aliannejadi, M., & Crestani, F. (2018). Personalized context-aware point of interest recommendation. ACM Trans Inf Syst, 36(4), 45:1-45:28. https://doi.org/10.1145/3231933
Article
Google Scholar
Aliannejadi, M., Mele, I., & Crestani, F. (2017a). A cross-platform collection for contextual suggestion. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR ’17, (pp. 1269–1272). https://doi.org/10.1145/3077136.3080752.
Aliannejadi, M., Rafailidis, D., & Crestani, F. (2017b). Personalized keyword boosting for venue suggestion based on multiple lbsns. In: European conference on information retrieval, Springer: . (pp. 291–303).
Arampatzis, A., & Kalamatianos, G. (2017). Suggesting points-of-interest via content-based, collaborative, and hybrid fusion methods in mobile devices. ACM Trans Inf Syst, 36(3), https://doi.org/10.1145/3125620.
Bayomi, M., & Lawless, S. (2016). Adapt\_tcd: An ontology-based context aware approach for contextual suggestion. In: TREC 2016.
Bayomi, M., Caputo, A., Nicholson, M., Chakraborty, A., & Lawless, S. (2019). Core: A cold-start resistant and extensible recommender system. In: Proceedings of the 34th ACM/SIGAPP symposium on applied computing, ACM, New York, NY, USA, SAC ’19, (pp. 1679–1682), https://doi.org/10.1145/3297280.3297601.
Chakraborty, A. (2017). Exploring search behaviour in microblogs. In: Seventh BCS-IRSG symposium on future directions in information Access, FDIA 2017, 5 September 2017, Barcelona, Spain, https://doi.org/10.14236/ewic/FDIA2017.8.
Chakraborty, A. (2018). Enhanced contextual recommendation using social media data. In: The 41st international ACM SIGIR conference on research & development in information retrieval, ACM, New York, NY, USA, SIGIR ’18, (pp. 1455–1455). https://doi.org/10.1145/3209978.3210223.
Chakraborty, A., Ganguly, D., Caputo, A., & Lawless, S. (2019). A factored relevance model for contextual point-of-interest recommendation. In: Proceedings of the 2019 ACM SIGIR international conference on theory of information retrieval, ACM, New York, NY, USA, ICTIR ’19, (pp. 157–164), https://doi.org/10.1145/3341981.3344230.
Chakraborty, A., Ganguly, D., & Conlan, O. (2020a). Relevance models for multi-contextual appropriateness in point-of-interest recommendation. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, association for computing machinery, New York, NY, USA, SIGIR ’20, (pp. 1981–1984), https://doi.org/10.1145/3397271.3401197.
Chakraborty, A., Ganguly, D., & Conlan, O. (2020b). Retrievability based document selection for relevance feedback with automatically generated query variants. In: Proceedings of the 29th ACM international conference on information and knowledge management, association for computing machinery, New York, NY, USA, CIKM ’20, (pp. 125–134). https://doi.org/10.1145/3340531.3412032.
Chen, L., Chen, G., & Wang, F. (2015). Recommender systems based on user reviews: the state of the art. User Modeling and User-Adapted Interaction, 25(2), 99–154.
MathSciNet
Article
Google Scholar
Cheng, C., Yang, H., King, I., & Lyu, M. R. (2012). Fused matrix factorization with geographical and social influence in location-based social networks. In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence, AAAI Press, AAAI ’12, (pp. 17–23).
Cleverdon, C. (1997). The Cranfield Tests on Index Language Devices (pp. 47–59). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Google Scholar
Dean-Hall, A., Clarke, C. L. A., Kamps, J., Thomas, P., & Voorhees, E. M. (2012). Overview of the TREC 2012 contextual suggestion track. In: Proceedings of The twenty-first text REtrieval conference, TREC 2012, Gaithersburg, Maryland, USA, November 6-9, 2012, http://trec.nist.gov/pubs/trec21/papers/CONTEXTUAL12.overview.pdf.
Dean-Hall, A., Clarke, C. L., Kamps, J., Thomas, P., Simone, N., & Voorhees, E. (2013). Overview of the trec 2013 contextual suggestion track. In: Proceedings of TREC.
Dean-Hall, A., Clarke, C. L., Kamps, J., Kiseleva, J., Voorhees, E. M. (2015). Overview of the trec 2015 contextual suggestion track. In: Proceedings of TREC, (vol 2015).
Dehghani, M., Kamps, J., Azarbonyad, H., & Marx, M. (2016). Significant words language models for contextual suggestion. In: TREC.
Deveaud, R., Albakour, M. D., Macdonald, C., & Ounis, I. (2015). Experiments with a venue-centric model for personalisedand time-aware venue suggestion. In: Proceedings of the 24th ACM international on conference on information and knowledge management, ACM, New York, NY, USA, CIKM ’15, (pp. 53–62), https://doi.org/10.1145/2806416.2806484.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805.
Fang, Q., Xu, C., Hossain, M. S., & Muhammad, G. (2016). Stcaplrs: A spatial-temporal context-aware personalized location recommendation system. ACM Transactions on Intelligent Systems and Technology, 7(4), 59:1-59:30. https://doi.org/10.1145/2842631.
Article
Google Scholar
Ganguly, D. (2020). Learning variable-length representation of words. Pattern Recognition, 103,107306. https://doi.org/10.1016/j.patcog.2020.107306. https://www.sciencedirect.com/science/article/pii/S0031320320301102.
Gao, H., Tang, J., Hu, X., & Liu, H. (2013). Exploring temporal effects for location recommendation on location-based social networks. In: Proceedings of the 7th ACM conference on recommender systems, ACM, New York, NY, USA, RecSys ’13, (pp. 93–100). https://doi.org/10.1145/2507157.2507182.
Gemulla, R., Nijkamp, E., Haas, P. J., & Sismanis, Y. (2011). Large-scale matrix factorization with distributed stochastic gradient descent. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, association for computing machinery, New York, NY, USA, KDD ’11, (pp. 69–77), https://doi.org/10.1145/2020408.2020426.
Ghosh, K., Chakraborty, A., Parui, S. K., & Majumder, P. (2016). Improving information retrieval performance on ocred text in the absence of clean text ground truth. Information processing & management, 52(5), 873 – 884 , https://doi.org/10.1016/j.ipm.2016.03.006. http://www.sciencedirect.com/science/article/pii/S030645731630036X.
Griesner, J. B., Abdessalem, T., & Naacke, H. (2015). Poi recommendation: Towards fused matrix factorization with geographical and temporal influences. In: Proceedings of the 9th ACM conference on recommender systems, ACM, New York, NY, USA, RecSys ’15, (pp. 301–304). https://doi.org/10.1145/2792838.2799679.
Harman, D. (1996). Overview of the fourth text retrieval conference (trec-4). NIST Special Publication, 500236, 1–23.
Google Scholar
Hashemi, S. H., Clarke, C. L., Kamps, J., Kiseleva, J., & Voorhees, E. M. (2016a). Overview of the trec 2016 contextual suggestion track. In: Proceedings of TREC, (vol 2016).
Hashemi, S. H., Kamps, J., & Amer, N. O. (2016b). Neural endorsement based contextual suggestion. In: TREC.
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T. S. (2017). Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web, international world wide web conferences steering committee, republic and Canton of Geneva, Switzerland, WWW ’17, (pp. 173–182), https://doi.org/10.1145/3038912.3052569.
Jaleel, N. A., Allan, J., Croft, W. B., Diaz, F., Larkey, L. S., Li, X., Smucker, M. D., & Wade, C. (2004). Umass at TREC 2004: Novelty and HARD. In: Proceedings of the thirteenth text REtrieval conference, TREC 2004, Gaithersburg, Maryland, USA, November 16-19, 2004, http://trec.nist.gov/pubs/trec13/papers/umass.novelty.hard.pdf.
Jiang, M., & He, D. (2013). Pitt at trec 2013 contextual suggestion track. In: TREC 2013.
Khorasani, M., Sadjadi, H., Ramazani, F., & Ensan, F. (2016). A context based recommender system through collaborative filtering and word embedding techniques. In: TREC.
Lavrenko, V., & Croft, W. B. (2001). Relevance based language models. In: Proceedings of the 24th annual international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR ’01, (pp. 120–127). https://doi.org/10.1145/383952.383972.
Lavrenko, V., Choquette, M., & Croft, W. B. (2002). Cross-lingual relevance models. In: Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval, association for computing machinery, New York, NY, USA, SIGIR ’02, (pp. 175-182). https://doi.org/10.1145/564376.564408.
Levi, A., Mokryn, O., Diot, C., & Taft, N. (2012). Finding a needle in a haystack of reviews: cold start context-based hotel recommender system. In: Proceedings of the sixth ACM conference on recommender systems, ACM, New York, NY, USA, RecSys ’12, (pp. 115–122). https://doi.org/10.1145/2365952.2365977.
Li, H., & Alonso, R. (2014). User modeling for contextual suggestion. In: TREC 2014.
Li, H., Yang, Z., Lai, Y., Duan, L., & Fan, K. (2014). Bjut at trec 2014 contextual suggestion track: Hybrid recommendation based on open-web information. In: TREC 2014.
Li, X., Han, D., He, J., Liao, L., & Wang, M. (2019). Next and next new poi recommendation via latent behavior pattern inference. ACM Transactions on Information and Systems, 37(4), https://doi.org/10.1145/3354187.
Liu, B., Fu, Y., Yao, Z., & Xiong, H. (2013). Learning geographical preferences for point-of-interest recommendation. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, association for computing machinery, New York, NY, USA, KDD ’13, (pp. 1043–1051). https://doi.org/10.1145/2487575.2487673.
Liu, X., & Croft, W. B. (2002). Passage retrieval based on language models. In: Proceedings of the eleventh international conference on information and knowledge management, association for computing machinery, New York, NY, USA, CIKM ’02, (pp. 375-382), https://doi.org/10.1145/584792.584854.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:190711692.
Lv, Y., & Zhai, C. (2009). A comparative study of methods for estimating query language models with pseudo feedback. In: Proceedings of the 18th ACM conference on information and knowledge management, ACM, New York, NY, USA, CIKM ’09, (pp. 1895–1898). https://doi.org/10.1145/1645953.1646259.
Manotumruksa, J., Macdonald, C., & Ounis, I. (2016). Modelling user preferences using word embeddings for context-aware venue recommendation. arXiv preprint arXiv:160607828.
Mihalcea, R., & Tarau, P. (2004). Textrank: bringing order into text. In: Proceedings of the 2004 conference on empirical methods in natural language processing (pp. 404–411).
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th international conference on neural information processing systems - Volume 2, Curran Associates Inc., USA, NIPS’13, (pp. 3111–3119). http://dl.acm.org/citation.cfm?id=2999792.2999959.
Miyahara, K., & Pazzani, M. J. (2000). Collaborative filtering with the simple bayesian classifier. In: Proceedings of the 6th pacific rim international conference on artificial intelligence, Springer-Verlag, Berlin, Heidelberg, PRICAI ’00, (pp. 679–689).
Musat, C. C., Liang, Y., & Faltings, B. (2013). Recommendation using textual opinions. In: Proceedings of the twenty-third international joint conference on artificial intelligence, AAAI Press, IJCAI ’13, (pp. 2684–2690).
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: global vectors for word representation. In: Empirical methods in natural language processing (EMNLP), (pp. 1532–1543), http://www.aclweb.org/anthology/D14-1162.
Roy, D., Bandyopadhyay, A., & Mitra, M. (2013). A simple context dependent suggestion system. In: TREC 2013.
Roy, D., Ganguly, D., Mitra, M., & Jones, G. J. (2016). Word vector compositionality based relevance feedback using kernel density estimation. In: Proceedings of the 25th ACM international on conference on information and knowledge management, ACM, New York, NY, USA, CIKM ’16, (pp. 1281–1290). https://doi.org/10.1145/2983323.2983750.
Roy, D., Ganguly, D., Bhatia, S., Bedathur, S., & Mitra, M. (2018). Using word embeddings for information retrieval: How collection and term normalization choices affect performance. In: Proceedings of the 27th ACM international conference on information and knowledge management, association for computing machinery, New York, NY, USA, CIKM ’18, (pp. 1835–1838), https://doi.org/10.1145/3269206.3269277.
Samar, T., Bellogín, A., & de Vries, A. P. (2016). The strange case of reproducibility versus representativeness in contextual suggestion test collections. Information Retrieval Journal, 19(3), 230–255.
Article
Google Scholar
Shaw, J. A., & Fox, E. A. (1994). Combination of multiple searches. In: The second text REtrieval conference (TREC-2), (pp. 243–252).
Steck, H. (2011). Item popularity and recommendation accuracy. In: Proceedings of the fifth ACM conference on recommender systems, association for computing machinery, New York, NY, USA, RecSys ’11, (pp. 125–132). https://doi.org/10.1145/2043932.2043957.
Suglia, A., Greco, C., Musto, C., de Gemmis, M., Lops, P., & Semeraro, G. (2017). A deep architecture for content-based recommendations exploiting recurrent neural networks. In: Proceedings of the 25th conference on user modeling, adaptation and personalization, association for computing machinery, New York, NY, USA, UMAP ’17, (pp. 202–211), https://doi.org/10.1145/3079628.3079684.
Voorhees, E., & Harman, D. (1999). Overview of the eighth text retrieval conference (trec-8). In: TREC.
Yang, P., & Fang, H. (2012). An exploration of ranking-based strategy for contextual suggestion. In: TREC 2012.
Ye, M., Yin, P., Lee, W. C., & Lee, D. L. (2011). Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR ’11, (pp. 325–334), https://doi.org/10.1145/2009916.2009962.
Yu, Y., & Chen, X. (2015). A survey of point-of-interest recommendation in location-based social networks. In: Workshops at the twenty-ninth AAAI conference on artificial intelligence.
Yuan, Q., Cong, G., Ma, Z., Sun, A., & Thalmann, N. M. (2013). Time-aware point-of-interest recommendation. In: Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR ’13, (pp. 363–372). https://doi.org/10.1145/2484028.2484030.
Zhang, J. D., & Chow, C. Y. (2015). Geosoca: Exploiting geographical, social and categorical correlations for point-of-interest recommendations. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, association for computing machinery, New York, NY, USA, SIGIR ’15, (pp. 443–452). https://doi.org/10.1145/2766462.2767711.