Skip to main content
Log in

Effect of Grain Size on the Thermal Expansion of Isotropic Synthetic Graphites

  • Published:
Inorganic Materials Aims and scope

Abstract

The relationship is analyzed between the thermal expansion coefficient of synthetic graphites and the grain size of their filler. It is shown by examining a large number of commercial graphites of different classes that their thermal expansion coefficient increases from 2 × 10−6 to (7–8) × 10−6 K−1 as the grain size decreases from 3000 to 1 µm. The strength of synthetic graphites also increases with increasing grain size and correlates with thermal expansion. The likely reason for the increase in thermal expansion coefficient is the better contact between neighboring microvolumes of the material. A model is proposed for the thermal expansion of synthetic graphites which considers microvolumes 0.1 to 0.5 µm in size, with a thermal expansion coefficient on the order of 8.3 × 10−6 K−1, only a fraction of the microvolumes being involved in thermal-expansion transfer. The fraction of such microvolumes decreases with increasing grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Grafit kak vysokotemperaturnyi material (Graphite as High-Temperature Material), Moscow: Mir, 1964.

  2. Yadernyi grafit (Nuclear Graphite), Vyatkin, S.E. et al., Eds., Moscow: Atomizdat, 1967.

    Google Scholar 

  3. Ostrovskii, V.S., Virgil'ev, Yu.S., Kostikov, V.I., and Shipkov, N.N., Iskusstvennyi grafit (Synthetic Graphite), Moscow: Metallurgiya, 1986.

    Google Scholar 

  4. Zhu, Q., Qiu, X., and Ma, C., Oxidation Resistant SiC Coating for Graphite Materials, Carbon, 1999, vol. 37, no.9, pp. 1475–1484.

    CAS  ISI  Google Scholar 

  5. Virgil'ev, Yu.S. and Lebedev, I.G., Radiation Resistance of Isotropic Structural Graphites, Neorg. Mater., 2002, vol. 38, no.10, pp. 1192–1198 [Inorg. Mater. (Engl. Transl.), vol. 38, no. 10, pp. 1002–1007].

    Article  Google Scholar 

  6. Hall, G., Marsden, B.J, Fok, S.L., and Smart, J., The Relationship between Irradiation Induced Dimensional Change and the Coefficient of Thermal Expansion: Modified Simmons Relationship, Nucl. Eng. Des., 2003, no. 222, pp. 319–330.

  7. Fizicheskie velichiny: Spravochnik (Physical Quantities: A Handbook), Meilikhov, E.Z., Ed., Moscow: Energoizdat, 1991.

    Google Scholar 

  8. Virgil'ev, Yu.S., Thermal Expansion of Structural Graphites, Fiz. Khim. Obrab. Mater., 1995, no. 4, pp. 84–103.

  9. Levintovich, I.Ya., Kotosonov, A.S., Buchnev, L.M., and Rubinchik, P.M., Structural Aspects of the Thermal Expansion of Polycrystalline Graphite, Khim. Tverd. Topl. (Moscow), 1990, no. 2, pp. 130–135.

  10. Hacker, P.J., Neighbour, G.B., and McEnaney, B., The Coefficient of Thermal Expansion of Nuclear Graphite with Increasing Thermal Oxidation, J. Phys. D: Appl. Phys., 2000, vol. 33, pp. 991–998.

    Article  CAS  Google Scholar 

  11. Tiwari, R., Strong, S.L., and Lewis, I.C., Preferred Orientation of Coke Particles, XXIII Biennial Conf. on Carbon, CARBONE'97, Pennsylvania State Univ., 1997, pp. 52–53.

  12. Viennet, L., Khellafi, S., Coustenoble, L., et al., A Statistical Strength Model for Polygranular Graphites, I World Conf. on Carbon, Eurocarbon 2000, Berlin, 2000, pp. 409–410.

  13. Rubinchik, P.M., Kotosonov, A.S., and Ostronov, B.G., A Technique for Quantifying the Microtexture of Carbon Materials, Zavod. Lab., 1987, no. 8, pp. 62–63.

  14. Samoilov, V.M., Levintovich, I.Ya., Ostronov, B.G., et al., Effect of the Granulometric Composition of Binary Fillers on the Mechanical Properties of Fine-Grained Graphites, Neorg. Mater., 1993, vol. 29, no.2, pp. 200–203 [Inorg. Mater. (Engl. Transl.), vol. 29, no. 2, pp. 142–144].

    CAS  Google Scholar 

  15. Keramika iz ogneupornykh okislov (Refractory Oxide Ceramics), Bakunov, V.S. et al., Eds., Moscow: Metallurgiya, 1977.

    Google Scholar 

  16. Polymer Engineering Composites, Richardson, M.O.W., Ed., London: Applied Science, 1977. Translated under the title Promyshlennye polimernye kompozitsionnye materialy, Moscow: Khimiya, 1980.

    Google Scholar 

  17. Modern Composite Materials, Broutman, L.J. and Krock, R.H., Eds., Reading: Addison-Wesley, 1967. Translated under the title Sovremennye kompozitsionnye materialy, Moscow: Mir, 1970.

    Google Scholar 

  18. Kelly, B.T., The Thermal Expansion Coefficients of Graphite Crystals—the Theoretical Model and Comparison with 1990 Data, Carbon, 1991, vol. 29, pp. 721–724.

    Article  CAS  ISI  Google Scholar 

  19. Sutton, A.L. and Howard, V.C., The Role of Porosity in the Accommodation of Thermal Expansion in Graphite, J. Nucl. Mater., 1962, vol. 7, no.1, pp. 58–71.

    Article  Google Scholar 

  20. Jenkins, G.M., The Thermal Expansion of Polycrystalline Graphite, J. Nucl. Mater., 1964, vol. 13, no.1, pp. 33–39.

    Article  CAS  Google Scholar 

  21. Kotosonov, A.S., Levintovich, I.Ya., and Ostronov, B.G., Structural Perfection and Some Properties of Polycrystalline Carbon Materials, in Struktura i svoistva uglerodnykh materialov (Structure and Properties of Carbon Materials), Moscow: Metallurgiya, 1987, pp. 88–100.

    Google Scholar 

  22. Samoilov, V.M. and Ostronov, B.G., Effect of Grain Size on the Modulus of Elasticity and Strength of Synthetic Graphites, Neorg. Mater., 2004, vol. 40, no.4, pp. 425–429 [Inorg. Mater. (Engl. Transl.), vol. 40, no. 4, pp. 359–363].

    Google Scholar 

  23. Kelly, A., Strong Solids, London: Oxford Univ. Press, 1971. Translated under the title Vysokoprochnye materialy, Moscow: Mir, 1976.

    Google Scholar 

  24. Kirkpatrick, S., Percolation and Conduction, Rev. Mod. Phys., 1973, vol. 45, no.4, pp. 574–588.

    Article  Google Scholar 

  25. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Application, and Algorithms), Moscow: Editorial URSS, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Neorganicheskie Materialy, Vol. 41, No. 12, 2005, pp. 1456–1462.

Original Russian Text Copyright © 2005 by Samoilov, Shilo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilov, V.M., Shilo, D.V. Effect of Grain Size on the Thermal Expansion of Isotropic Synthetic Graphites. Inorg Mater 41, 1283–1288 (2005). https://doi.org/10.1007/s10789-005-0302-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10789-005-0302-y

Keywords

Navigation