Skip to main content
Log in

Rare-Earth-Activated Fluorophosphate Glasses: Local Environment of the Activator and Capture Volume Model

  • Published:
Inorganic Materials Aims and scope

Abstract

Data are presented on the induced optical absorption and EPR in Ba(PO3)2-MgF2 glasses activated with Tb2O3 and Eu2O3. The effect of activator concentration on the EPR spectra of the PO 2−4 and PO 2−3 centers in glasses differing in fluoride content is analyzed. The results indicate that fluorophosphate glasses can be characterized by two capture volumes which may differ several times, depending on the activator concentration. At low activator concentrations, corresponding to the largest capture volume, the activator ions seem to be in a phosphate environment. The maximum Tb3+ concentration is comparable to the Eu3+ concentration at which the luminescence spectrum points to a phosphate environment of the rare-earth ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Quimby, R.S., Fluoride Glass Fiber Optics, San Diego: Academics, 1991.

    Google Scholar 

  2. Adam, J.L., Fluoride Glass Research in France: Fundamentals and Applications, J. Fluorine Chem., 2001, vol. 107, pp. 265–270.

    Article  Google Scholar 

  3. Kawamoto, Y., Ogura, K., Shojiya, M., et al., Coordination Environments Eu3+ and Er3+ in MFn-BaF2-LnF3 Glasses (M = Zn, Al, Ga, Sc, Zr, or Hf; n = 2, 3, 4; Ln = Eu or Er), J. Phys.: Condens. Matter, 1998, vol. 10, pp. 9711–9720.

    Article  Google Scholar 

  4. Schaudel, B., Goldner, P., Prassas, M., and Auzel, F., Cooperative Luminescence as a Probe of Clustering in Yb3+ Doped Glasses, J. Alloys Compd., 2000, vol. 300/301, pp. 443–449.

    Article  Google Scholar 

  5. Tanabe, S., Optical Transitions of Rare-Earth Ions for Amplifiers: How the Local Structure Works in Glass, J. Non-Cryst. Solids, 1999, vol. 259, pp. 1–9.

    Article  Google Scholar 

  6. Hiroyuki, I., Kohei Sogo, and Akio Makishima, Structure and Optical Properties of Eu3+-Doped Fluoroaluminate and Fluorophosphate Glasses, J. Non-Cryst. Solids, 1997, vol. 222, pp. 212–220.

    Google Scholar 

  7. Kolobkov, V.P., Khalilev, V.D., Vasylyak, Ya.P., et al., Luminescence Spectra of Rare-Earth-Activated Fluorophosphate Glasses, Fiz. Khim. Stekla, 1977, vol. 3, no.3, pp. 249–255.

    Google Scholar 

  8. Zhmyreva, I.A., Kolobkov, V.P., Lisitsyna, E.A., and Khalilev, V.D., Vibrational and Vibronic Spectra of Activated Fluoride and Nitride Glasses, Fiz. Khim. Stekla, 1991, vol. 17, no.1, pp. 70–76.

    Google Scholar 

  9. Karapetyan, K.G., Kuznetsov, A.R., and Nikitina, S.I., Luminescence Spectra of Neodymium-Activated Fluorophosphate Glasses, Fiz. Khim. Stekla, 1990, vol. 16, no.5, pp. 774–776.

    Google Scholar 

  10. Stroud, J.S., Color-Center Kinetics in Cerium-Containing Glass, J. Chem. Phys., 1965, vol. 43, no.7, pp. 2442–2450.

    Article  Google Scholar 

  11. Bocharova, T.V., Karapetyan, G.O., Tagil’tseva, N.O., and Khalilev, V.D., Postirradiation Behavior of Rare-Earth-Activated Fluoroaluminate Glasses, Neorg. Mater., 2002, vol. 38, no.12, pp. 1525–1532 [Inorg. Mater. (Engl. Transl.), vol. 38, no. 12, pp. 1302–1308].

    Google Scholar 

  12. Bocharova, T.V., A Model for the Carrier Capture Volume in Terbium-Activated Fluorophosphate Glasses, Fiz. Khim. Stekla, 2005, vol. 31, no.3, pp. 1–10.

    Google Scholar 

  13. Bocharova, T.V., Karapetyan, G.O., and Shelekhin, Yu.L., Paramagnetic Centers in Gamma-Irradiated Activated Phosphate Glasses, Fiz. Khim. Stekla, 1985, vol. 11, no.2, pp. 233–237.

    Google Scholar 

  14. Galimov, D.G., Karapetyan, G.O., Petrovskii, G.T., et al., Effect of Hard Radiation on Fluoroberyllate Glasses Activated with Rare-Earth and Transition-Metal Ions, Izv. Akad. Nauk SSSR, Neorg. Mater., 1969, vol. 5, no.10, pp. 1807–1809.

    Google Scholar 

  15. Galimov, D.G., Karapetyan, G.O., and Yudin, D.M., Effect of Ionizing Radiation on Transition-Metal-Activated Glasses, Izv. Akad. Nauk SSSR, Neorg. Mater., 1969, vol. 5, no.8, pp. 1386–1391.

    Google Scholar 

  16. Wargin, W.W. and Karapetjan, G.O., Absorptionsspektren und Lumineszenzcer-Haltiger Glaser, Glastech. Ber., 1959, vol. 32, no.11, pp. 443–450.

    Google Scholar 

  17. Dmitryuk, A.V., Karapetyan, G.O., and Maksimov, L.V., Activator Segregation and Its Spectroscopic Signatures, Zh. Prikl. Spektrosk., 1975, vol. 22, no.1, pp. 153–182.

    Google Scholar 

  18. Bocharova, T.V., Tagil’tseva, N.O., and Khalilev, V.D., Effect of Ionizing Radiation on Europium-Containing Fluoroaluminate Glasses Activated with CeF3, TiO2, V2O5, CrF3, and CuF2, Neorg. Mater., 1999, vol. 35, no.1, pp. 94–98 [Inorg. Mater. (Engl. Transl.), vol. 35, no. 1, pp. 78–81].

    Google Scholar 

  19. Klyava, Ya.G., EPR-spektroskopiya neuporyadochennykh tverdykh tel (EPR Spectroscopy of Disordered Solids), Riga: Zinatne, 1988, pp. 230, 237.

    Google Scholar 

  20. Karapetyan, G.O., Sherstyuk, A.N., and Yudin, D.M., Optical and EPR Studies of Gamma-Irradiated Phosphate Glasses, Opt. Spektrosk., 1967, vol. 22, no.3, pp. 443–449.

    Google Scholar 

  21. Berger, B., Vignaud, G., Olazcuaga, R., and Zahir, M., ESR of X-ray Irradiated Vitreous and Crystalline Sodium Metaphosphate, J. Non-Cryst. Solids, 1983, vol. 54, no.1/2, pp. 113–119.

    Article  Google Scholar 

  22. Beekenkamp, P., Colour Centers in Borate, Phosphate, and Borophosphate Glasses, Philips Res. Rep., Suppl., 1966, no. 4, pp. 65–88.

  23. Khalilev, V.D., Fluorophosphate Glasses, in Svoistva i razrabotka novykh opticheskikh stekol (Properties and Design of New Optical Glasses), Leningrad: Mashinostroenie, 1977, pp. 62–91.

    Google Scholar 

  24. Hosono, H., Abe, J., and Kawazoe, H., ESR-Study of Radiation Induced Paramagnetic Defect Centers Localized on a Phosphorus in Binary Phosphate Glasses, J. Non-Cryst. Solids, 1985, vol. 71, nos.1–3, pp. 261–267.

    Article  Google Scholar 

  25. Bocharova, T.V., Karapetyan, G.O., and Yashchurzhinskaya, O.A., Correlation between the Optical and EPR Spectra of Gamma-Irradiated Activated Phosphate Glasses, Fiz. Khim. Stekla, 1985, vol. 11, no.6, pp. 677–684.

    Google Scholar 

  26. Bocharova, T.V., Karapetyan, G.O., Khalilev, V.D., and Yashchurzhinskaya, O.A., Optical and EPR Spectra of Gamma-Irradiated Ba(PO3)2-LiF Glasses, Fiz. Khim. Stekla, 1985, vol. 11, no.1, pp. 87–92.

    Google Scholar 

  27. Petrovskii, G.T., Saitov, R.K., Trifonov, E.D., et al., Electronic Structure of the Cyclotetraphosphate Radical in Phosphate Glasses Studied by EPR, Fiz. Khim. Stekla, 1975, vol. 1, no.1, pp. 23–30.

    Google Scholar 

  28. Bocharova, T., Karapetyan, G., Mironov, A., and Tagil’tseva, N.O., Spectroscopic Properties of Eu3+ in Fluorophosphate Glasses, Phosphorus Res. Bull., 2002, vol. 13, pp. 87–90.

    Google Scholar 

  29. Anisimov, V.A., Dmitryuk, A.V., Karapetyan, G.O., and Maksimov, L.V., Structural Study of Rare-Earth Phosphate Glasses by Spectral-Kinetic Techniques and Light Scattering Spectroscopy, Stekloobraznoe sostoyanie (Glassy State), Leningrad: Nauka, 1983, pp. 62–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Neorganicheskie Materialy, Vol. 41, No. 8, 2005, pp. 1016–1024.

Original Russian Text Copyright ¢ 2005 by Bocharova, Mironov, Karapetyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocharova, T.V., Mironov, A.M. & Karapetyan, G.O. Rare-Earth-Activated Fluorophosphate Glasses: Local Environment of the Activator and Capture Volume Model. Inorg Mater 41, 892–899 (2005). https://doi.org/10.1007/s10789-005-0232-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10789-005-0232-8

Keywords

Navigation