Skip to main content
Log in

Crystal-Melt Partition Coefficients of Impurities in Forsterite, Mg2SiO4: Experimental Determination, Crystal-Chemical Analysis, and Thermodynamic Evaluation

  • Published:
Inorganic Materials Aims and scope

Abstract

The forsterite-melt partition coefficients K are determined experimentally for a large number of mono-, di-, tri-, and tetravalent impurities. The energies of native defects and impurities (E d) and the solution energies (E s) of impurities in forsterite are evaluated using computer simulation. The defect energy is shown to vary linearly with the difference in ionic radius between the host and substituent atoms (Δr) and with the impurity cation charge, while the partition coefficient and solution energy of impurities are quadratic functions of these parameters. The plots of lnK versus (Δr)2 and E s versus (Δr)2 for isovalent substitutions and Me xMg and Me xSi ) pass close to the origin, in contrast to the plots for heterovalent substitutions (Me Mg and Me Si ). The significant y intercept of the latter plots is interpreted as evidence for the formation of extra defects maintaining electroneutrality. The y intercept of the plot of E s versus (Δr)2 is 2 eV, which is about half the formation energy of Frenkel defects in forsterite. The best fit equations representing the correlation between the partition coefficients and solution energies of impurities demonstrate that heterovalent substitutions increase the entropy contribution to the free energy of solution of impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nisel’son, L.A. and Yaroshevskii, A.G., Mezhfazovye koeffitsienty raspredeleniya. Ravnovesiya kristall-zhidkost’ i zhidkost’-par (Partition Coefficients for Solid-Liquid and Liquid-Vapor Equilibria), Moscow: Nauka, 1992.

    Google Scholar 

  2. Urusov, V.S., Tauson, V.L., and Akimov, V.V., Geokhimiya tverdogo tela (Geochemistry of Solids), Moscow: GEOS, 1997.

    Google Scholar 

  3. Allan, N.L., Blundy, J.D., Purton, J.A., et al., Trace Element Incorporation in Minerals and Melts, EMU Notes Mineral., 2001, vol. 3, pp. 251–302.

    Google Scholar 

  4. Purton, J.A., Blundy, J.D., and Allan, N.L., Computer Simulation of High-Temperature Forsterite-Melt Partitioning, Am. Mineral., 2000, vol. 85, pp. 1087–1091.

    CAS  Google Scholar 

  5. Kristallizatsiya iz rasplavov: Spravochnik (Crystal Growth from the Melt: A Handbook), Bartel, I., et al., Eds., Moscow: Metallurgiya, 1987.

    Google Scholar 

  6. Onuma, N., Higuchi, H., Wakita, H., and Nagasawa, H., Trace Element Partition between Two Pyroxenes and the Host Lava, Earth Planet. Sci. Lett., 1968, vol. 5, pp. 47–51.

    CAS  Google Scholar 

  7. Jensen, B.B., Patterns of Trace Element Partitioning, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 2227–2242.

    CAS  Google Scholar 

  8. Philpotts, J.A., The Law of Constant Rejection, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 909–920.

    CAS  Google Scholar 

  9. Beattie, P., Systematics and Energetics of Trace-Element Partitioning between Olivine and Silicate Melts: Implications for the Nature of Mineral/Melt Partitioning, Chem. Geol., 1994, vol. 117, pp. 57–71.

    CAS  Google Scholar 

  10. Dudnikova, V.B., Zharikov, E.V., Urusov, V.S., et al., Effects of the Ionic Radius and Charge State of Impurities on Their Forsterite-Melt Partition Coefficient, Mater. Elektron. Tekh., 2000, no. 2, pp. 11–14.

  11. Urusov, V.S., Teoriya izomorfnoii smesimosti (Theory of Isomorphous Miscibility), Moscow: Nauka, 1977.

    Google Scholar 

  12. Blundy, J.D. and Wood, B.J., Prediction of Crystal-Melt Partition Coefficients from Elastic Moduli, Nature (London), 1994, vol. 372, pp. 452–454.

    CAS  Google Scholar 

  13. Wood, B.J. and Blundy, J.D., A Predictive Model for Rare Earth Element Partitioning between Clinopyroxene and Anhydrous Silicate Melt, Contrib. Mineral. Petrol., 1997, vol. 129, pp. 166–181.

    CAS  Google Scholar 

  14. Blundy, J.D., Robinson, J.A.C., and Wood, B.J., Heavy REE Are Compatible in Clinopyroxene on the Spinel Iherzolite Solidus, Earth Planet. Sci. Lett., 1998, vol. 160, pp. 493–504.

    CAS  Google Scholar 

  15. Blundy, J.D. and Dalton, J.A., An Experimental Comparison of Clinopyroxene-Melt Partitioning in Silicate and Carbonate Systems and Implications for Mantle Metasomatism, Contrib. Mineral. Petrol., 2000, vol. 139, pp. 356–371.

    CAS  Google Scholar 

  16. Brenan, J.M., Shaw, H.F., Ryerson, F.J., and Phinney, D.L., Experimental Determination of Trace Element Partitioning between Pargasitic Amphibole and Synthetic Hydrous Melt, Earth Planet. Sci. Lett., 1995, vol. 135, pp. 1–12.

    CAS  Google Scholar 

  17. La Tourette, T., Hervig, R.L., and Holloway, J.R., Trace Element Partitioning between Amphibole, Phlogopite, and Basanite Melt, Earth Planet. Sci. Lett., 1995, vol. 135, pp. 13–30.

    Google Scholar 

  18. Moller, P., The Dependence of Partition Coefficients on Differences of Ionic Volumes in Crystal-Melt Systems, Contrib. Mineral. Petrol., 1988, vol. 99, pp. 62–69.

    Google Scholar 

  19. Dudnikova, V.B., Urusov, V.S., Bykov, A.B., and Kolesov, G.M., Forsterite-Melt Partitioning of Trivalent Trace Elements, Geokhimiya, 1992, no. 3, pp. 444–447.

  20. Shannon, R.D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no.5, pp. 751–767.

    Google Scholar 

  21. Dudnikova, V.B., Zharikov, E.V., Eremin, N.N., et al., Forsterite-Melt Partitioning of Vanadium and the Structural and Valence States of Vanadium, Geokhimiya, 2001, no. 7, pp. 734–743.

  22. Dudnikova, V.B., Gaister, A.V., Zharikov, E.V., et al., Forsterite-Melt Partitioning of Cr at Different Redox Conditions and Cr Concentrations in the Melt, Geokhimiya, 2005, no. 5.

  23. Shenjun, L., Lin, L., Zulun, W., et al., Growth and Characteristics of Mg2SiO4:Ti Crystal, J. Cryst. Growth, 1994, vol. 139, pp. 327–331.

    Google Scholar 

  24. Kobayashi, T. and Takei, H., Distribution of Some Trivalent Ions between Melt and Single Crystals Mg2SiO4 Grown by Czochralski Method, Earth Planet. Sci. Lett., 1977, vol. 36, pp. 231–236.

    CAS  Google Scholar 

  25. Wood, B.J. and Blundy, J.D., The Effect of Cation Charge on Crystal-Melt Partitioning of Trace Element, Earth Planet. Sci. Lett., 2001, vol. 188, pp. 59–71.

    CAS  Google Scholar 

  26. Birle, I.D., Gibbs, G.V., Moore, P.B., and Smith, J.V., Crystal Structure of Natural Olivines, Am. Mineral., 1968, vol. 53, pp. 807–825.

    CAS  Google Scholar 

  27. Gale, J.D., GULP: A Computer Program for the Symmetry Adopted Simulation of Solids, J. Chem. Soc., Faraday Trans., 1997, vol. 93, pp. 629–637.

    Google Scholar 

  28. Freeman, C.M. and Catlow, C.R.A., A Computer Modeling Study of Defect and Dopant States in SnO2, J. Solid State Chem., 1990, vol. 85, pp. 65–75.

    CAS  Google Scholar 

  29. Lewis, G.V. and Catlow, C.R.A., Potential Models for Ionic Oxides, J. Phys. C: Solid State Phys., 1985, vol. 18, pp. 1149–1161.

    CAS  Google Scholar 

  30. Sanders, M.J., Leslie, M.J., and Catlow, C.R.A., Inter-atomic Potentials for SiO2, J. Chem., Soc. Chem. Commun., 1984, vol. 18, pp. 1271–1273.

    Google Scholar 

  31. Hazen, R.M., Effects of Temperature and Pressure on the Crystal Structure of Forsterite, Am. Mineral., 1976, vol. 61, pp. 1280–1293.

    CAS  Google Scholar 

  32. Smyth, D.M. and Stocker, R.L., Point Defects and Non-Stoichiometry in Forsterite, Phys. Earth Planet. Inter., 1975, vol. 10, pp. 183–192.

    CAS  Google Scholar 

  33. Andersson, K., Borchart, G., Scherrer, S., and Weber, S., Self Diffusion in Mg2SiO4 (Forsterite) at High Temperature: A Model Case Study for SIMS Analyses on Ceramic Surfaces, Fresenius’ J. Anal. Chem., 1989, vol. 333, pp. 383–385.

    CAS  Google Scholar 

  34. Jaoul, O., Bertran-Alvarez, Y., Liebermann, R.C., and Price, G.D., Fe-Mg Interdiffusion in Olivine up to 9 GPa at T = 600–900°C; Experimental Data and Comparison with Defect Calculations, Phys. Earth Planet. Inter., 1995, vol. 89, pp. 199–218.

    CAS  Google Scholar 

  35. Purton, J.A., Allan, N.L., Blundy, J.D., and Wasserman, E.A., Isovalent Trace Element Partitioning between Minerals and Melts: A Computer Simulation Study, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 4977–4987.

    CAS  Google Scholar 

  36. Purton, J.A., Allan, N.L., and Blundy, J.D., Calculation Solution Energies of Heterovalent Cations in Forsterite and Diopside: Implication for Trace Element Partitioning, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 3927–3936.

    CAS  Google Scholar 

  37. Rajamani, V., Brown, G.E., and Prewitt, C.T., Cation Ordering in Ni-Mg Olivine, Am. Mineral., 1975, vol. 60, pp. 292–299.

    CAS  Google Scholar 

  38. McCormick, T.C., Smyth, J.R., and Lofgren, G.E., Site Occupancies of Minor Elements in Synthetic Olivines as Determined by Channeling-Enhanced X-ray Emission, Phys. Chem. Miner., 1987, vol. 14, pp. 368–372.

    CAS  Google Scholar 

  39. Gaite, J.M., Pseudo-Symmetries of Crystallographic Coordination Polyhedra. Application to Forsterite and Comparison with Some EPR Results, Phys. Chem. Miner., 1980, vol. 6, pp. 9–17.

    CAS  Google Scholar 

  40. Mass, J.L., Burlitch, J.M., Markgraf, S.A., et al., Oxygen Activity Dependence of Chromium(IV) Population in Chromium-Doped Forsterite Crystals Grown by Floating Zone Technique, J. Cryst. Growth, 1996, vol. 165, pp. 250–257.

    CAS  Google Scholar 

  41. Rager, H., Electron Spin Resonance of Trivalent Chromium in Forsterite, Mg2SiO4, Phys. Chem. Miner., 1977, vol. 1, pp. 371–378.

    CAS  Google Scholar 

  42. Rager, H., Electron-Nuclear Hyperfine Interaction of 53Cr3+ in Mg2SiO4 (Forsterite), Z. Naturforsch., A, 1980, vol. 3, pp. 1296–1303.

    Google Scholar 

  43. Budil, D.E., Park, D.G., Freed, J.H., et al., 9.6 GHz and 34 GHz Electron Paramagnetic Resonance Studies of Chromium-Doped Forsterite, J. Chem. Phys., 1994, vol. 101, pp. 3538–3548.

    CAS  Google Scholar 

  44. Urusov, V.S. and Dudnikova, V.B., Energetics of Heterovalent Microisomorphism with Vacancy Formation in Ionic Crystals, Geokhimiya, 1987, no. 9, pp. 1219–1230.

  45. Dudnikova, V.B., Gaister, A.V., Zharikov, E.V., et al., Effect of Compensation Doping on Chromium Solubility in Forsterite, Neorg. Mater., 2003, vol. 39, no.8, pp. 985–990 [Inorg. Mater. (Engl. Transl.), vol. 39, no. 8, pp. 845–850].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Neorganicheskie Materialy, Vol. 41, No. 6, 2005, pp. 720–732.

Original Russian Text Copyright © 2005 by Dudnikova, Urusov, Zharikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudnikova, V.B., Urusov, V.S. & Zharikov, E.V. Crystal-Melt Partition Coefficients of Impurities in Forsterite, Mg2SiO4: Experimental Determination, Crystal-Chemical Analysis, and Thermodynamic Evaluation. Inorg Mater 41, 627–638 (2005). https://doi.org/10.1007/s10789-005-0181-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10789-005-0181-2

Keywords

Navigation