Skip to main content
Log in

Insulin regulates Il-1α, Ifn-y and Il-4 release from murine splenocytes stimulated with staphylococcal protein A, toxic shock syndrome toxin-1 and streptococcal lysin S

  • Published:
InflammoPharmacology Aims and scope Submit manuscript

Abstract

In this study, changes were investigated in release of IL-1α, IFN-γ and IL-4 from mouse splenocytes stimulated with staphylococcal protein A (SpA), toxic shock syndrome toxin-1 (TSST-1) or streptococcal lysin S (SLS) in the presence of insulin. The results show that insulin-treated splenocytes stimulated by SpA had a 25% increase in IFN-γ release and a 50% decrease in IL-4 compared with splenocytes treated with SpA alone. IL-1α release was unchanged compared with controls. Insulintreated splenocytes stimulated with TSST-1 had a 30% fall in IL-1α and IFN-γ release compared with controls. There were no changes in IL-4 release. Splenocytes stimulated with SLS after insulin treatment increased their release of IL-1α and IFN-γ by 50%, whereas IL-4 release was unchanged. The data suggest that the insulin may have important functional implications in immunoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imuze H, Fukata JI. Endocrine-paracrine interactions in communication between the immune and endocrine systems. Activation of the hypothalamic-pituitary adrenal axis in inflammation. Eur J Endocrinol. 1994; 130:32–7

    Article  Google Scholar 

  2. Ramachandra RN, Sehon AH, Berczi I. Neuro-hormonal host defence in endotoxin shock. Brain Behav Immun. 1992;6:157–69.

    Article  PubMed  CAS  Google Scholar 

  3. Spined E, Suescum MO, Hadid R, Daneva T, Gaillard RC. Effects of gonadectomy and sex hormone therapy on the endotoxin-stimulated hypothalamic-pituitary-adrenal axis: evidence for the neuro-endocrine-immunological sexual dimorphism. Endocrinology. 1992;131:2430–6.

    Article  Google Scholar 

  4. Helderman JH, Reynolds TC, Strom TB. The insulin receptor as a universal marker of activated lymphocytes. Eur J Immunol. 1978;8:589–95.

    Article  PubMed  CAS  Google Scholar 

  5. Gavin JR III. Polypeptide hormone receptors on lymphoid cells. Application to the study of receptor alterations and radioreceptor assay of polypeptide hormones. In: Hadden JW, Coffey RG, Spreafico F, eds. Immunopharmacology. New York: Plenum Publishing Co.; 1977:357–87.

    Google Scholar 

  6. Krug U, Krug F, Cuatrecasas P. Emergence of insulin receptors on human lymphocytes during in vitro transformation. Proc Natl Acad Sci USA. 1972;69:2604–8.

    Article  PubMed  CAS  Google Scholar 

  7. Helderman JH, Strom TB, Dupuy-D’Angeac A. A close relationship between cytotoxic T lymphocytes generated in the mixed lymphocyte culture and insulin receptor-bearing lymphocytes: enrichment by density gradient centrifugation. Cell Immunol. 1979;46:247–58.

    Article  PubMed  CAS  Google Scholar 

  8. Helderman JH, Strom TB, Garovoy MR. Rapid mixed lymphocyte culture testing by analysis of the insulin receptor on alloactivated T lymphocytes: implications for human tissue typing. J Clin Invest. 1981;67:509–13.

    PubMed  CAS  Google Scholar 

  9. Galdiero M, Donnarumma G, Cipollaro de l’Ero G, Marcatili A, Scarfogliero P, Sommese L. Effect of growth hormone, prolactin and insulin on the release of IL-1α, IFN-γ and IL-4 by staphylococcal enterotoxin A-stimulated splenocytes. Eur Cytokine Netw. 1995;6:187–94.

    PubMed  CAS  Google Scholar 

  10. Vitiello M, Scarfogliero P, Galdiero M, Gorga F, Sommese L. Prolactin and insulin regulate the release of IL-1α and IFN-γ from murine splenocytes activated with porins or LPS of Salmonella typhimurium. Immunol Cell Biol. 1995;73:452–6.

    Article  PubMed  CAS  Google Scholar 

  11. Forsgren A. Protein A from Staphylococcus aureus. VIII. Production of protein A by bacterial and Lforms of Staphylococcal aureus. Acta Pathol Microbiol. 1969;75:481–90.

    CAS  Google Scholar 

  12. Alouf JE, Loridan C. Production, purification, and assay of Streptolysin S. Meth Enzymol. 1988;165:59–64.

    PubMed  CAS  Google Scholar 

  13. Thye Yin E, Galanos C, Kinsky S et al. Picogram sensitive assay for endotoxin: gelation of Limulus polyphemus blood cell lysate induced by purified lipopolysaccharide and lipid A from Gram-negative bacteria. Biochim Biophys Acta. 1972;261:284–9.

    Google Scholar 

  14. Helderman JH. T cell cooperation for the genesis of B cell insulin receptors. J Immunol. 1983;131:644–50.

    PubMed  CAS  Google Scholar 

  15. Scherer MT, Ignatowicz L, Winslow GM, Kappler JW, Marrack P. Superantigens: bacterial and viral proteins that manipulate the immune system. Ann Rev Cell Biol. 1993;9:101–28.

    PubMed  CAS  Google Scholar 

  16. Fast DJ, Schlievert PM, Nelson RD. Toxic shock syndrome-associated staphylococcal and streptococcal pyrogenic toxins are potent inducers of tumor necrosis factor production. Infect Immun. 1989;57:291–4.

    PubMed  CAS  Google Scholar 

  17. Parsonnet J, Hickman RK, Eardley DD, Pier GB. Induction of human interleukin-1 by toxic shock syndrome toxin-1. J Infect Dis. 1985;151:514–22.

    PubMed  CAS  Google Scholar 

  18. Parsonnet M, Gillis ZA. Production of tumor necrosis factor by human monocytes in response to toxic shock syndrome toxin-1. Rev Infect Dis. 1988;158:1026–33.

    CAS  Google Scholar 

  19. Hackett SP, Stevens DL. Streptococcal toxic shock syndrome: synthesis of tumor necrosis factor and interleukin-1 by monocytes stimulated with pyrogenic exotoxin A and Streptolysin O. J Infect Dis. 1992;165:879–85.

    PubMed  CAS  Google Scholar 

  20. Lang CH, Bagby GJ, Spitzer JJ. Carbohydrate dynamics in the hypermetabolic septic rat. Metabolism. 1984;33:959–63.

    Article  PubMed  CAS  Google Scholar 

  21. White RH, Frayn KN, Little RA, Threlfall CJ, Stoner HB, Irving MH. Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycemic glucose clamp technique. J Parent EntNutr. 1987;11:345–53.

    Article  CAS  Google Scholar 

  22. Sammalkorpi K. Glucose intolerance in acute infections. J Intern Med. 1989;225:15–19

    PubMed  CAS  Google Scholar 

  23. Virkamaki A, Puhakainen I, Koivisto VA, Vuorinen-Markkola H, Yki-Jarvinen H. Mechanisms of hepatic and peripheral insulin resistance during acute infections in humans. J Clin Endocrinol Metab. 1992;74:673–9.

    Article  PubMed  CAS  Google Scholar 

  24. Lang CH, Dobrescu C. In vivo insulin resistance during non-lethal hypermetabolic sepsis. Circ Shock. 1989;28:165–78.

    PubMed  CAS  Google Scholar 

  25. Rayfield EJ, Curnow RT, Reinhard D, Kochicheril NM. Effects of acute endotoxemia on glucoregulation in normal and diabetic subjects. J Clin Endocrinol Metab. 1977;45:513–21.

    Article  PubMed  CAS  Google Scholar 

  26. Kelleher DL, Fong BC, Bagby GJ, Spitzer JJ. Metabolic and hormonal changes following endotoxin administration to diabetic rats. Am J Physiol. 1982;243:R77–81.

    PubMed  CAS  Google Scholar 

  27. Hargrove DM, Bagby GJ, Lang CH, Spitzer JJ. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection. Am J Physiol. 1988;254:E16–22.

    PubMed  CAS  Google Scholar 

  28. Kasting NW, Martin JB. Altered release of growth hormone and thyrotropin induced by endotoxin in the rat. Am J Physiol. 1982;243:E332–7.

    PubMed  CAS  Google Scholar 

  29. Flores EA, Istfan N, Pomposelli JJ, Blackburn GL, Bistrian BR. Effect of interleukin-1 and tumor necrosis factor/cachectin on glucose turnover in rat. Metabolism. 1990;39:738–43.

    Article  PubMed  CAS  Google Scholar 

  30. Besedowski H, Del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science. 1986;233:652–4.

    Article  Google Scholar 

  31. Lang CH, Dobrescu C, Bagby GJ. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 1992;130:43–52.

    Article  PubMed  CAS  Google Scholar 

  32. Czech MP. Molecular Basis of Insulin Action. New York: Plenum Publishing Corp.; 1985.

    Google Scholar 

  33. Rosen OM. After insulin binds. Science. 1987;237:1452–8.

    Article  PubMed  CAS  Google Scholar 

  34. Ellis L, Morgan DO, Clauser E et al. Cold spring harbor. Symp Quant Biol. 1986;51:773–84.

    CAS  Google Scholar 

  35. Czech MP, Klarlund JK, Yagaloff KA, Bradford AP, Lewis RE. Insulin receptor signaling. Activation of multiple serine kinases. J Biol Chem. 1988;263:11017–20.

    PubMed  CAS  Google Scholar 

  36. Dent P, Lavoinne A, Nakielny S, Caudwell FB, Watt P, Cohen P. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature. 1990;348:302–8.

    Article  PubMed  CAS  Google Scholar 

  37. Goldfield AE, Dolly C, Maniatis T. Human tumor necrosis factor gene regulation by virus and lipopolysaccharide. Proc Natl Acad Sci USA. 1990;87:9769–73.

    Article  Google Scholar 

  38. Akira S, Kishimoto T. NF-IL6 and NK-KB in cytokine gene regulation. Adv Immunol. 1997;65:l-46.

    Google Scholar 

  39. Zipris D, Greiner DL, Malkani S, Whalen B, Mordes JP, Rossini AA. Cytokine gene expression in islets and thyroids of BB rats. IFN-γ and IL-12p40 mRNA increase with age in both diabetic and insulintreated nondiabetic BB rats. J Immunol. 1996;156:1315–21.

    PubMed  CAS  Google Scholar 

  40. Andersen A, Pedersen H, Bendtzen K, Ropke C. Effects of growth factors on cytokine production in serum-free cultures of human thymic epithelial cells. Scand J Immunol. 1993;38:233–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommese, L., Scarfogliero, P., Vitiello, M. et al. Insulin regulates Il-1α, Ifn-y and Il-4 release from murine splenocytes stimulated with staphylococcal protein A, toxic shock syndrome toxin-1 and streptococcal lysin S. Inflammopharmacol 6, 311–320 (1998). https://doi.org/10.1007/s10787-998-0015-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-998-0015-3

Keywords

Navigation