Skip to main content
Log in

Neurogenic inflammation in lung disease: Burnt out?

  • Review
  • Published:
InflammoPharmacology Aims and scope Submit manuscript

Abstract

Neurogenic inflammation results from activation of sensory nerves which, acting in an ‘efferent’ manner, release sensory neuropeptides to induce a wide variety of physiological and immunological responses. This process is easy to demonstrate experimentally in the airways of small laboratory animal species but in human airways is equivocal and, at best, minor compared with cholinergic neural control. Nevertheless, sensory neuropeptides (calcitonin gene-related peptide and the tachykinins, substance P and neurokinin A) induce airway responses in both laboratory animals and humans which suggest a potential for sensory-efferent control of human airways. In addition, there is indirect evidence for an increased ‘expression’ of sensory nerves and tachykinin receptors in asthma and bronchitis, which indicates that neurogenic inflammation contributes to pathophysiology of these airway conditions. In contrast, clinical trials using different classes of drugs to inhibit sensory nerve responses have failed to resolve whether neurogenic inflammation is involved in asthma, although there are concerns about the relevance of some of these studies. In contrast to their involvement in airway neurogenic inflammation, sensory nerves may be important in initiating protective reflexes, including coughing and sneezing, acting via their afferent pathways. Thus, although flickering, the concept of neurogenic inflammation in lung disease is not yet burnt out. However, it needs the rekindling of interest which re-evaluation as a protective process may bring, together with data from more appropriate clinical studies in asthma and chronic bronchitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunnil MS. The pathology of asthma with special reference to changes in the mucosa. J Clin Pathol. 1960;13:27–33.

    Article  Google Scholar 

  2. Reid L. Pathology of chronic bronchitis. Lancet. 1954;i:275–8.

    Article  Google Scholar 

  3. Bruce AN. Vaso-dilator axon reflexes. Q J Exp Physiol. 1913;6:339–54.

    Google Scholar 

  4. Holzer P. Capsaicin: cellular targets, mechanism of action, and selectivity for thin sensory neurons. Pharmacol Rev. 1991;43:143–201.

    PubMed  CAS  Google Scholar 

  5. Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of the tachykinins, calcitonin gene related peptide and other neuropeptides. Neuroscience. 1988;24:739–68.

    Article  PubMed  CAS  Google Scholar 

  6. Maggi CA, Meli A. The sensory-efferent function of capsaicin-sensitive sensory neurones. Gen Pharmacol. 1987;19:1–43.

    Google Scholar 

  7. Barnes PJ, Baraniuk JN, Belvisi MG. Neurpeptides in the respiratory tract. Am Rev Respir Dis. 1991;144:1187–98.

    PubMed  CAS  Google Scholar 

  8. Maggi CA, Patacchini R, Rovero P, Giachetti A. Tachykinin receptors and tachykinin receptor antagonists. J Auton Pharmacol. 1993;13:23–93.

    PubMed  CAS  Google Scholar 

  9. Khawaja AM, Rogers DF. Tachykinins: receptor to effector. Int J Biochem Cell Biol. 1996;28:721–38.

    Article  PubMed  CAS  Google Scholar 

  10. Ramnarine SI, Rogers DF. Non-adrenergic, non-cholinergic neural control of mucus secretion in the airways. Pulm Pharmacol. 1994;7:19–33.

    Article  PubMed  CAS  Google Scholar 

  11. Bertrand C, Geppetti P. Tachykinin and kinin receptor antagonists: therapeutic perspectives in allergic disease. Trends Pharmacol Sci. 1996;17:255–9.

    Article  PubMed  CAS  Google Scholar 

  12. Joos GF, Germonpré PR, Kips JC, Peleman RA, Pauwels RA. Sensory neuropeptides and the human lower airways: present state and future directions. Eur Respir J. 1994;7:1161–71.

    PubMed  CAS  Google Scholar 

  13. Martling CR, Theodorsson-Norheim E, Lundberg JM. Occurrence and effects of multiple tachykinins: substance P, neurokinin A, and neuropeptide K in human lower airways. Life Sci. 1987;40:1633–43.

    Article  PubMed  CAS  Google Scholar 

  14. Lundberg JM, Hokfelt, T, Martling CR, Saria A, Cuello C. Substance P immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res. 1984;236:251–61.

    Google Scholar 

  15. Komatsu T, Yamamoto M, Shimokata K, Nagura H. Distribution of substance P-immunoreactive and calcitonin gene-related-immunoreactive nerves in normal human lungs. Int Arch Allergy Appl Immunol. 1991;95:23–8.

    PubMed  CAS  Google Scholar 

  16. Luts A, Sundler F. Peptide-containing nerve fibers in the respiratory tract of the ferret. Cell Tissue Res. 1989;258:259–67.

    Article  PubMed  CAS  Google Scholar 

  17. Lundberg JM, Martling C-R, Saria A. Substance P and capsaicin-induced contraction of human bronchi. Acta Physiol Scand. 1983;119:49–53.

    PubMed  CAS  Google Scholar 

  18. Rogers DF, Barnes PJ. Opioid inhibition of neurally mediated mucus secretion in human bronchi. Lancet. 1989;1:930–2.

    Article  PubMed  CAS  Google Scholar 

  19. Lundberg JM, Martling C-R, Saria A, Folkers K, Rosell S. Cigarette smoke-induced airway oedema due to activation of capsaicin-sensitive vagal afferents and substance P release. Neuroscience. 1983;10:1361–8.

    Article  PubMed  CAS  Google Scholar 

  20. Ramnarine SI, Hirayama Y, Barnes PJ, Rogers DF. ‘Sensory-efferent’ neural control of mucus secretion: characterisation using tachykinin receptor antagonists in ferret trachea in vitro. Br J Pharmacol. 1994;113:1183–90.

    PubMed  CAS  Google Scholar 

  21. Baker B, Peatfield AC, Richardson PS. Nervous control of mucin secretion into human bronchi. J Physiol. 1985;365:297–305.

    PubMed  CAS  Google Scholar 

  22. Killingsworth CR, Paulauskis JD, Shore S. Substance P content and preprotachykinin gene-ImRNA expression in a rat model of chronic bronchitis. Am J Respir Cell Mol Biol. 1996;14:334–40.

    PubMed  CAS  Google Scholar 

  23. Karlsson J-A, Zackrisson C, Lundberg JM. Hyperresponsiveness to tussive stimuli in cigarette smoke-exposed guinea-pigs: a role for capsacin-sensitive, calcitonin gene-related peptide-containing nerves. Acta Physiol Scand. 1991;141:445–54.

    PubMed  CAS  Google Scholar 

  24. Balzamo E, Joanny P, Steinberg JG, Oliver C, Jammes Y. Mechanical ventilation increases substance P concentration in the vagus, sympathetic, and phrenic nerves. Am J Respir Crit Care Med. 1996;153:153–7.

    PubMed  CAS  Google Scholar 

  25. Barnes PJ. Asthma as an axon reflex. Lancet. 1986;i:242–5.

    Article  Google Scholar 

  26. Fox AJ. Mechanisms and modulation of capsaicin activity on airway afferent nerves. Pulm Pharmacol. 1995;8:207–15.

    Article  PubMed  CAS  Google Scholar 

  27. Kuo H-P, Rohde JAL, Barnes PJ, Rogers DF. Cigarette smoke-induced airway goblet cell secretion: dose-dependent differential nerve activation. Am J Physiol. 1992;108:69–76.

    Google Scholar 

  28. Karlsson J-A. A role for capsaicin sensitive, tachykinin containing nerves in chronic coughing and sneezing but not in asthma: a hypothesis. Thorax. 1993;48:396–400.

    Article  PubMed  CAS  Google Scholar 

  29. Burns AR, James AL, Greene SG, Schellenberg RR, Hogg JC. Effect of airways sensory C fibre network degeneration on airways permeability and responsiveness. Exp Lung Res. 1992;18:287–98.

    PubMed  CAS  Google Scholar 

  30. Fox AJ, Lalloo UG, Belvisi MG, Bernareggi M, Chung KF, Barnes PJ. Bradykinin-evoked sensitisation of airway sensory nerves: a mechanisms for ACE-inhibitor cough. Nature Med. 1996;7:814–7.

    Google Scholar 

  31. Cardell LO, Uddman R, Edvisson L. Low plasma levels of VIP and elevated levels of other neuropeptides during exacerbations of asthma. Eur Respir J. 1994;7:2169–73.

    Article  PubMed  CAS  Google Scholar 

  32. Tomaki M, Ichinose M, Miura M et al. Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care med. 1995;151:613–7.

    PubMed  CAS  Google Scholar 

  33. Nieber K, Baumgarten CR, Rathsack R, Furkert J, Oehme P, Kunkel G. Substance P and β-endorphin-like immunoreactivity in lavage fluids of subjects with and without allergic asthma. J Allergy Clin Immunol. 1992;90:646–52.

    Article  PubMed  CAS  Google Scholar 

  34. Lilly CM, Bai TR, Shore SA, Hall AE, Drazen JM. Neuropeptide content from asthmatic and nonasthmatic patients. Am J Crit Care Med. 1995;151:548–53.

    CAS  Google Scholar 

  35. Ollerenshaw SL, Javis D, Woolcock A, Sullivan C, Scheibner T. Substance P immunoreactive nerves in airways from asthmatics and non-asthmatics. Eur Respir J. 1991;4:673–82.

    PubMed  CAS  Google Scholar 

  36. Howarth PH, Djukanovic R, Reddington T, Holgate ST, Springall DR, Polak JM Neuropeptide-containing nerves in endobronchial biopsies from asthmatic and non-asthmatic subjects. Am J Respir Cell Mol Biol. 1995;13:288–96.

    PubMed  CAS  Google Scholar 

  37. Adcock IM, Peters M, Gelder C, Shirasaki H, Brown CR, Barnes PJ. Increased tachykinin recepetor gene expression in asthmatic lung and its modulation by steroids. J Mol Endocrinol. 1993;11:1–7.

    PubMed  CAS  Google Scholar 

  38. Bai A, Zhou D, Weir T et al. Substance P (NK1)- and neurokinin A (NK2)-receptor gene expression in inflammatory airway diseases. Am J Physiol. 1995;269:L309–17.

    PubMed  CAS  Google Scholar 

  39. Goldie RG. Receptors in asthmatic airways. Am Rev Respir Dis. 1990;141:S151–6.

    PubMed  CAS  Google Scholar 

  40. Fujii T, Murai M, Morimoto H et al. Pharmacological profile of a high affinity dipeptide NK1 receptor antagonist, FK888. Br J Pharmacol. 1992;107:785–9.

    PubMed  CAS  Google Scholar 

  41. Wang Z-Y, Tung SR, Strichartz GR, Hakanson R. Investigation of the specificity of FK888 as a tachykinin NK1 receptor antagonist. Br J Pharmacol. 1994;111:1342–6.

    PubMed  CAS  Google Scholar 

  42. McLean S, Ganong A, Seymour PA et al. Pharmacology of CP-99,994: a non-peptide antagonist of the tachykinin neurokinin-1 receptor. J Pharmacol Exp Ther. 1993;267:472–9.

    PubMed  CAS  Google Scholar 

  43. Ichinose M, Murai M, Yamaguchi H, et al. A neurokinin 1-receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am J Respir Crit Care Med. 1996;153:936–41.

    PubMed  CAS  Google Scholar 

  44. Fahy J, Wong HH, Geppetti P et al. Effect of an NK1 receptor antagonist (CP-99,994) on hypertonic saline-induced bronchoconstriction and cough in male asthmatic subjects. Am J Respir Crit Care Med. 1995;152:879–84.

    PubMed  CAS  Google Scholar 

  45. Maggi CA, Astolfi M, Guiliani S et al. MEN 10,627, a novel polycyclic peptide antagonist of tachykinin NK2 receptors. J Pharmacol Exp Ther. 1994;271:1489–500.

    PubMed  CAS  Google Scholar 

  46. Advenier C, Naline E, Toty L et al. Effects on the isolated human bronchus of SR 48968, a potent and selective nonpeptide antagonist on the neurokinin A (NK2) receptors. Am Rev Respir Dis. 1992;146:1177–81.

    PubMed  CAS  Google Scholar 

  47. Girard V, Yavo JC, Emonds-Alt X, Advenier C. The tachykinin NK2 receptor antagonist SR 48968 inhibits citric acid-induced airway hyperresponsiveness in guinea pigs. Am J Respir Crit Care Med. 1996;153:1496–502.

    PubMed  CAS  Google Scholar 

  48. Morimoto H, Murai M, Maeda Y et al. FK224, a noval cyclopeptide substance P antagonist with NK1 and NK2 receptor selectivty. J Pharmacol Exp Ther. 1992;262:398–402.

    PubMed  CAS  Google Scholar 

  49. Hirayama Y, Lei Y-H, Barnes PJ, Rogers DF. Effects of two novel tachykinin antagonists, FK224 and FK888, on neurogenic airway plasma exudation, bronchoconstriction and systemic hypotension in guinea-pigs in vivo. Br J Pharmacol. 1993;108:844–51.

    PubMed  CAS  Google Scholar 

  50. Ichinose M, Nakajima N, Takahashi T, Yamaguchi H, Inoue H, Takishima T. Protection against bradykinin-induced bronchoconstriction in asthmatic patients by neurokinin receptor antagonist. Lancet. 1993;340:1248–51.

    Article  Google Scholar 

  51. Ichinose M, Katsumata U, Kikuchi R et al. Effect of tachykinin antagonist on chronic bronchitis patients. Am Rev Respir Dis. 1993;147(Suppl):A318.

    Google Scholar 

  52. Joos GF, van Schoor J, Kips JC, Pauwels R. The effect of inhaled FK224, a tachykinin NK-1 and NK-2 receptor antagonist, on neurokinin A-induced bronchoconstriction. Am J Respir Crit Care Med. 1996;153:1781–4.

    PubMed  CAS  Google Scholar 

  53. Barnes PJ, Belvisi MG, Rogers DF. Modulation of neurogenic inflammation: novel approaches to inflammatory disease. Trends Pharmacol Sci. 1990;11:185–9.

    Article  PubMed  CAS  Google Scholar 

  54. Pavord I, Hall I, Wahedna I, Cooper S, Tattersfield A. Effect of 443c81, an inhaled μ-opioid receptor agonist in asthma. Clin Exp Allergy. 1994;24:144–8.

    Article  PubMed  CAS  Google Scholar 

  55. Harrison NK, Dawes KE, Kwon O-J, Barnes PJ, Laurent GJ, Chung KF. Effects of neuropeptides on human lung fibroblast proliferation and chemotaxis. Am J Physiol. 1995;268:L278–83.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, D.F. Neurogenic inflammation in lung disease: Burnt out?. Inflammopharmacol 5, 319–329 (1997). https://doi.org/10.1007/s10787-997-0029-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-997-0029-2

Keywords

Navigation