Skip to main content

Advertisement

Log in

A new acyl derivative of sulfadimethoxine inhibits phagocyte oxidative burst and ameliorates inflammation in a mice model of zymosan-induced generalised inflammation

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Chronic inflammation and oxidative stress play a pivotal role in the pathophysiology of most challenging illnesses, including cancer, Alzheimer’s, cardiovascular and autoimmune diseases. The present study aimed to investigate the anti-inflammatory potential of a new sulfadimethoxine derivative N-(4-(N-(2,6-dimethoxypyrimidin-4-yl) sulfamoyl) phenyl) dodecanamide (MHH-II-32). The compound was characterised by applying 1H-, 13C-NMR, EI–MS and HRFAB–MS spectroscopic techniques. The compound inhibited zymosan-induced oxidative bursts from whole blood phagocytes and isolated polymorphonuclear cells with an IC50 value of (2.5 ± 0.4 and 3.4 ± 0.3 µg/mL), respectively. Furthermore, the inhibition of nitric oxide with an IC50 (3.6 ± 2.2 µg/mL) from lipopolysaccharide-induced J774.2 macrophages indicates its in vitro anti-inflammatory efficacy. The compound did not show toxicity towards normal fibroblast cells. The observational findings, gross anatomical analysis of visceral organs and serological tests revealed the non-toxicity of the compound at the highest tested intraperitoneal (IP) dose of 100 mg/kg in acute toxicological studies in Balb/c mice. The compound treatment (100 mg/kg) (SC) significantly (P < 0.001) downregulated the mRNA expression of inflammatory markers TNF-α, IL-1β, IL-2, IL-13, and NF-κB, which were elevated in zymosan-induced generalised inflammation (IP) in Balb/c mice while upregulated the expression of anti-inflammatory cytokine IL-10, which was reduced in zymosan-treated mice. No suppressive effect was observed at the dose of 25 mg/kg. Ibuprofen was taken as a standard drug. The results revealed that the new acyl derivative of sulfadimethoxine has an immunomodulatory effect against generalised inflammatory response with non-toxicity both in vitro and in vivo, and has therapeutic potential for various chronic inflammatory illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be available from the corresponding author upon reasonable request.

Abbreviations

ANOVA:

Analysis of variance

BME:

β-mercaptoethanol

cDNA:

Complementary deoxyribonucleic acid

CVDs:

Cardiovascular diseases

DMEM:

Dulbecco’s-modified eagle’s medium

DNA:

Deoxyribonucleic acid

dNTPs:

Deoxynucleotide triphosphate

EDTA:

Ethylene diamine tetra acetic acid

FBS:

Fetal bovine serum

ESRD:

End-stage renal disease

GPx:

Glutathione peroxidase

HBSS:

Hank’s balance salt solution

IBD:

Inflammatory bowel disease

IC50:

Inhibitory concentration 50

IL:

Interleukin

IP:

Intraperitoneal

L-NMMA:

NG-monomethyl-l-arginine acetate

LPS:

Lipopolysaccharide

LSM:

Lymphocyte separation medium

MTT:

Methyl thiazolyl tetrazolium

MAPK:

Mitogen-activated protein kinase

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced)

NF-кB:

Nuclear factor kappa B

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PBS:

Phosphate buffer saline

PCR:

Polymerase chain reaction

PMNs:

Polymorphonuclear leukocytes

RA:

Rheumatoid arthritis

RBCs:

Red blood cells

RLU:

Relative light unit

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SC:

Subcutaneous

SLE:

Systematic lupus erythematosus

ZIGI:

Zymosan-induced generalised inflammation

SD:

Standard deviation

SEM:

Standard error of mean

SOZ:

Serum opsonized zymosan

SPSS:

Statistical package for social sciences

TNF-α:

Tumor necrosis factor alpha

NS:

Nephrotic syndrome

NSAIDs:

Nonsteroidal anti-inflammatory drugs

References

  • Adams V et al (2002) Induction of iNOS expression in skeletal muscle by IL-1β and NFκB activation: an in vitro and in vivo study. Cardiovasc Res 54(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Akdis CA et al (2020) Type 2 immunity in the skin and lungs. Allergy 75(7):1582–1605

    Article  CAS  PubMed  Google Scholar 

  • Akhter E, Bilal S, Haque U (2011) Prevalence of arthritis in India and Pakistan: a review. Rheumatol Int 31(7):849–855

    Article  PubMed  Google Scholar 

  • Al-Khalaifah H, Al-Nasser A (2018) Immune response of molluscs. In: Molluscs. IntechOpen. https://doi.org/10.5772/intechopen.81778

  • Amale MH, Shahneh A, Nasrollahi S (2013) Effects of nitric oxide synthase inhibition on goat oocyte meiotic maturation. Arch Anim Breed 56(1):255–263

    Article  Google Scholar 

  • Bertsias G, Cervera R, Boumpas DT (2012) Systemic lupus erythematosus: pathogenesis and clinical features. EULAR Textb Rheum Dis 5:476–505

    Google Scholar 

  • Bonizzi G, Karin M (2004) The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288

    Article  CAS  PubMed  Google Scholar 

  • Bouillaud F (2023) Inhibition of succinate dehydrogenase by pesticides (SDHIs) and energy metabolism. Int J Mol Sci 24(4):4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chromý V, Rozkošná K, Sedlak P (2008) Determination of serum creatinine by Jaffe method and how to calibrate to eliminate matrix interference problems. Clin Chem Lab Med 46(8):1127–1133

    Article  PubMed  Google Scholar 

  • Courtois G, Gilmore T (2006) Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25(51):6831

    Article  CAS  PubMed  Google Scholar 

  • Danihelová M et al (2013) Antioxidant action and cytotoxicity on HeLa and NIH-3T3 cells of new quercetin derivatives. Interdiscip Toxicol 6(4):209–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Ertel W et al (1992) Ibuprofen restores cellular immunity and decreases susceptibility to sepsis following hemorrhage. J Surg Res 53(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Fenton KA, Pedersen HL (2023) Advanced methods and novel biomarkers in autoimmune diseases‑a review of the recent years progress in systemic lupus erythematosus. Front Med 10:1183535. https://doi.org/10.3389/fmed.2023.1183535

    Article  Google Scholar 

  • Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015:610813. https://doi.org/10.1155/2015/610813

    Article  PubMed  PubMed Central  Google Scholar 

  • Garthwaite J (2016) From synaptically localized to volume transmission by nitric oxide. J Physiol 594(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M et al (2015) The interplay between cyclic AMP, MAPK, and NF-κB pathways in response to proinflammatory signals in microglia. BioMed Res Int 2015:308461. https://doi.org/10.1155/2015/308461

  • Hämäläinen M et al (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflam 2007:45673. https://doi.org/10.1155/2007/45673

    Article  CAS  Google Scholar 

  • Haroon N et al (2007) Impact of rheumatoid arthritis on quality of life. Mod Rheumatol 17(4):290–295

    Article  PubMed  Google Scholar 

  • Hiraku Y et al (2010) The role of iNOS-mediated DNA damage in infection-and asbestos-induced carcinogenesis. Ann N Y Acad Sci 1203(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH et al (2012) Susceptibility to gold nanoparticle-induced hepatotoxicity is enhanced in a mouse model of nonalcoholic steatohepatitis. Toxicology 294(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749

    Article  CAS  PubMed  Google Scholar 

  • Kayser V, Besson J, Guilbaud G (1987) Paradoxical hyperalgesic effect of exceedingly low doses of systemic morphine in an animal model of persistent pain (Freund’s adjuvant-induced arthritic rats). Brain Res 414(1):155–157

    Article  CAS  PubMed  Google Scholar 

  • Khan H et al (2010) The antinociceptive activity of Polygonatumverticillatum rhizomes in pain models. J Ethnopharmacol 127(2):521–527

    Article  PubMed  Google Scholar 

  • Koeberle A, Werz O (2014) Multi-target approach for natural products in inflammation. Drug Discovery Today 19(12):1871–1882

    Article  CAS  PubMed  Google Scholar 

  • Kohen R, Nyska A (2002) Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650

    Article  CAS  PubMed  Google Scholar 

  • Koko W et al (2008) In vitro immunomodulating properties of selected Sudanese medicinal plants. J Ethnopharmacol 118(1):26–34

    Article  CAS  PubMed  Google Scholar 

  • Kunwar A, Priyadarsini K (2011) Free radicals, oxidative stress and importance of antioxidants in human health. J Med Allied Sci 1(2):53–60

    Google Scholar 

  • Libby P (2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 65(suppl_3):S140–S146

  • McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219

    Article  CAS  PubMed  Google Scholar 

  • Murata A et al (2003) A novel inhibitory effect of D-allose on production of reactive oxygen species from neutrophils. J Biosci Bioeng 96(1):89–91

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ (2005) The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci 102(24):8686–8691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ (2006) Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol 6(4):379–386

    Article  CAS  PubMed  Google Scholar 

  • Oray M et al (2016) Long-term side effects of glucocorticoids. Expert Opin Drug Saf 15(4):457–465

    Article  CAS  PubMed  Google Scholar 

  • Rampton DS (1998) New treatments for inflammatory bowel disease. World J Gastroenterol 4(5):369

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizvi F et al (2019) Studies on isoniazid derivatives through a medicinal chemistry approach for the identification of new inhibitors of urease and inflammatory markers. Sci Rep 9(1):1–14

    Article  CAS  Google Scholar 

  • Salama RA et al (2016) Equivalent intraperitoneal doses of ibuprofen supplemented in drinking water or in diet: a behavioral and biochemical assay using antinociceptive and thromboxane inhibitory dose–response curves in mice. PeerJ 4:e2239

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah S et al (2018) Diclofenac 1, 3, 4-oxadiazole derivatives; biology-oriented drug synthesis (BIODS) in search of better non-steroidal, non-acid antiinflammatory agents. Med Chem 14(7):674–687

    Article  CAS  PubMed  Google Scholar 

  • Shahriari S et al (2011) Effect of ibuprofen on IL-1 [Beta], TNF-[alpha] and PGE2 levels in periapical exudates: a double blinded clinical trial. Iran J Immunol 8(3):176

    CAS  PubMed  Google Scholar 

  • Shinde A, Ganu J, Naik P (2012) Effect of free radicals & antioxidants on oxidative stress: a review. J Dent Allied Sci 1(2):63

    Article  Google Scholar 

  • Siddiqui H et al (2018) Sulphamethazine derivatives as immunomodulating agents: new therapeutic strategies for inflammatory diseases. PLoS ONE 13(12):e0208933

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui H et al (2021) Synthesis of new enrofloxacin derivatives as potential antibiofilm drugs against staphylococcus aureus and klebsiella pneumoniae. Med Chem 17(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383

    Article  CAS  PubMed  Google Scholar 

  • Tafani M et al (2013) Modulators of HIF1α and NFkB in cancer treatment: is it a rational approach for controlling malignant progression? Front Pharmacol 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  • Vella L et al (2014) Ibuprofen supplementation and its effects on NF-κB activation in skeletal muscle following resistance exercise. Physiol Rep 2(10):e12172

    Article  PubMed  PubMed Central  Google Scholar 

  • Volman TJ, Hendriks T, Goris RJA (2005) Zymosan-induced generalised inflammation: experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock 23(4):291–297

    Article  CAS  PubMed  Google Scholar 

  • Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10(1):45

    Article  CAS  PubMed  Google Scholar 

  • Weng T-C et al (2011) Ibuprofen worsens Streptococcus pyogenes soft tissue infections in mice. J Microbiol Immunol Infect 44(6):418–423

    Article  CAS  PubMed  Google Scholar 

  • Wong C et al (2005) Role of p38 MAPK and NF-kB for chemokine release in coculture of human eosinophils and bronchial epithelial cells. Clin Exp Immunol 139(1):90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA (2003) IL-13 effector functions. Annu Rev Immunol 21(1):425–456

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Jones KS (2009) Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res Part A 90(2):411–418

    Article  Google Scholar 

  • Yang YM, Seki E (2015) TNFα in liver fibrosis. Curr Pathobiol Rep 3(4):253–261

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Animal house facility of PCMD, ICCBS, University of Karachi for providing desired strain of mice and proper work station. Biobank facility of PCMD, ICCBS, University of Karachi provided us cell lines. HMH is thankful to the International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan for the 1-year doctoral fellowship under supervision of HS.

Funding

The work is financially supported by Higher Education commission (HEC), Pakistan (Project No. 8263 NRPU 2017–18).

Author information

Authors and Affiliations

Authors

Contributions

TA conducted biology experiments, collected and analysed the underlying data, provide statistical analysis. TA and SFS drafted the manuscript. HMH performed chemistry experiments synthesize and provide compound for biological studies and analysed data under the supervision of HS. AJ contributed to the concept and design of the current study, analysed the biological data and interpreted the results together with TA. AJ supervised the biology experiments, responsible for fund support and revised and finalized the manuscript. All authors read and approved the submitted version of this article.

Corresponding author

Correspondence to Almas Jabeen.

Ethics declarations

Conflict of interest

The authors declare that there were no conflicts of interest.

Ethical approval

The in vitro studies on human blood cells was conducted as per approval of the Independent Ethics Committee, UoK No: ICCBS/IEC-008-BC-2015. The blood was collected from healthy volunteers with their informed consent, for in vivo studies animal study protocol was approved by the local ethical committee of research animals, PCMD, ICCBS, UK (ASP No. 2018–0010).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3702 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, T.A., Haniffa, H.M., Siddiqui, H. et al. A new acyl derivative of sulfadimethoxine inhibits phagocyte oxidative burst and ameliorates inflammation in a mice model of zymosan-induced generalised inflammation. Inflammopharmacol 31, 3303–3316 (2023). https://doi.org/10.1007/s10787-023-01372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01372-0

Keywords

Navigation