Skip to main content

Advertisement

Log in

Targeting memory loss with aspirin, a molecular mechanism perspective for future therapeutic approaches

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Acetylsalicylic acid (ASA), also known as aspirin, was discovered in 1897 as an acetylated form of salicylate. It has been widely used for its anti-inflammatory and antiplatelet effects. It is commonly used for its cardiovascular benefits and is prescribed as secondary prophylaxis after a heart attack. Furthermore, low-dose, long-term ASA is used to reduce the risk of heart attack and stroke in individuals without prior cardiovascular disease. Acetylsalicylic acid acts as a non-selective inhibitor of cyclooxygenase (COX), which inhibits the synthesis of prostaglandins and prevents pro-inflammatory cytokines. Findings suggest that targeting cytokines and growth factors could be a potential therapeutic strategy for reducing neuroinflammation and slowing down the progression of dementia. Additionally, prostaglandins contribute to synaptic plasticity and can act as retrograde messengers in synapses. Research has implicated COX-1, one of the isoforms of the enzyme, in neuroinflammation and neurodegenerative disorders. The inhibition of COX-1 might potentially prevent impairments in working memory and reduce neuroinflammation caused by beta-amyloid proteins in some conditions, such as Alzheimer’s disease (AD). Cyclooxygenase-2, an inducible form of the enzyme, is expressed in cortical and hippocampal neurons and is associated with long-term synaptic plasticity. The inhibition or knockout of COX-2 has been shown to decrease long-term potentiation, a process involved in memory formation. Studies have also demonstrated that the administration of COX-2 inhibitors impairs cognitive function and memory acquisition and recall in animal models. There remains a debate regarding the effects of aspirin on dementia and cognitive decline. Although some studies suggest a possible protective effect of non-steroidal anti-inflammatory drugs, including aspirin, against the development of AD, others have shown inconsistent evidence. This review provides an overview of the effects of ASA or its active metabolite salicylate on learning, memory, and synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

COX:

Cyclooxygenase

PG:

Prostaglandins

ASICs:

Acid-sensing ion channels

ASA:

Acetylsalicylic acid

DAT:

Dementia of the Alzheimer's type

HD:

Huntington's disease

PD:

Parkinson's disease

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

CNS:

Central nervous system

PD-D:

Parkinson’s disease dementia

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

MCI:

Mild cognitive impairment

AlCl3:

Aluminium trichloride

NSAIDs:

Non-steroidal anti-inflammatory drugs

RR:

Relative risk

RCT:

Randomized controlled trial

MMSE:

Mini-Mental State Examination

VD:

Vascular dementia

CHD:

Coronary heart disease

TFEB:

Transcription factor EB

PPARα:

Peroxisome proliferator-activated receptor alpha

5XFAD:

5X familial Alzheimer's disease

TXA2:

Thromboxane A2

NMDA:

N-Methyl-D-aspartate

HFS:

High-frequency stimulation

LTP:

Long-term potentiation

DG:

Dentate gyrus

siRNA:

Short interfering RNA

PP:

Perforant pathway

LPS:

Lipopolysaccharide

mEPSCs:

Miniature excitatory postsynaptic currents

CA1:

Cornu ammonis 1

TBS:

Theta burst stimulation

EP2:

PGE2 receptor 2 subtype

Gq:

G protein q

PLC:

Phospholipase C

IP3:

Inositol 1,4,5-trisphosphate

PTX:

Pertussis toxin

cAMP:

Cyclic adenosine monophosphate

EPSPs:

Excitatory postsynaptic potentials

PPI:

Paired-pulse index

PK:

Protein kinase

Gs:

G protein s

fEPSP:

Field excitatory postsynaptic potential

IL:

Interleukin

NF-κB:

Nuclear factor kappa-light-chain enhancer of activated B

Aβ1–40:

Amyloid β-Protein1–40

TNF-α:

Necrosis factor alpha

NFTs:

Neurofibrillary tangles

CREB:

cAMP response element-binding protein

LBD:

Ligand-binding domain

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

Tyr 314:

Tyrosine 314

TAU:

Tubulin associated unit

ROS:

Reactive oxygen species

MCP:

Monocyte chemo attractant protein

MIP:

Macrophage inflammatory protein

MEK:

Mitogen-activated protein kinase kinase

JNK:

C-Jun N-terminal kinase

ADAM:

Metalloprotease

TACE:

TNF-α converting enzyme

sAPP:

Soluble amyloid precursor protein

Th2:

T helper cell type 2

CCL:

C–C motif chemokine ligand

MCSFs:

Macrophage colony-stimulating factors

CSF:

Cerebrospinal fluid

NGF:

Nerve growth factors

VEGF:

Vascular endothelial growth factor

PNS:

Peripheral nervous system

INFs:

Interferons

CXCL10:

C-X-C motif ligand

CDK:

Cyclin-dependent kinase

ASA-CS:

Acetylsalicylic acid-chitosan-encapsulated drug delivery system

IHC:

Immunohistochemical analysis

LXA4:

Lipoxin A4

Aps:

β-Amyloid plaques

TR-FRET:

Time-resolved-Förster’s resonance energy transfer

References

  • Akaneya Y, Tsumoto T (2006) Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex. J Neurosci 26(40):10209–10221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2(10):734–744

    Article  PubMed  CAS  Google Scholar 

  • Al-Sofiani ME, Derenbecker R, Quartuccio M, Kalyani RR (2019) Aspirin for primary prevention of cardiovascular disease in diabetes: a review of the evidence. Curr DiabRep 19:1–10

    CAS  Google Scholar 

  • Amann R, Peskar BA (2002) Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol 447(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity F. J Integr Plant Biol 53(6):412–428

    Article  PubMed  CAS  Google Scholar 

  • Andrasi E, Pali N, Molnar Z, Kosel S (2005) Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis 7(4):273–284. https://doi.org/10.3233/jad-2005-7402

    Article  PubMed  CAS  Google Scholar 

  • Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N (2001) Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76(6):1895–1904

    Article  PubMed  CAS  Google Scholar 

  • Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G, Yirmiya R (2003) Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13(7):826–834

    Article  PubMed  CAS  Google Scholar 

  • Bahniwal M, Little JP, Klegeris A (2017) High glucose enhances neurotoxicity and inflammatory cytokine secretion by stimulated human astrocytes. Curr Alzheimer Res 14(7):731–741

    Article  PubMed  CAS  Google Scholar 

  • Ballou LR, Botting RM, Goorha S, Zhang J, Vane JR (2000) Nociception in cyclooxygenase isozyme-deficient mice. Proc Natl Acad Sci 97(18):10272–10276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazan NG (2001) COX-2 as a multifunctional neuronal modulator. Nat Med 7(4):414–415

    Article  PubMed  CAS  Google Scholar 

  • Bergström P, Agholme L, Nazir FH, Satir TM, Toombs J, Wellington H, Strandberg J, Bontell TO, Kvartsberg H, Holmström M, Boreström C (2016) Amyloid precursor protein expression and processing are differentially regulated during cortical neuron differentiation. Sci Rep 6(1):29200

    Article  PubMed  PubMed Central  Google Scholar 

  • Berk M, Dean O, Drexhage H, McNeil JJ, Moylan S, O’Neil A, Davey CG, Sanna L, Maes M (2013) Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med 11(1):1–17

    Article  Google Scholar 

  • Berti V, Pupi A, Mosconi L (2011) PET/CT in diagnosis of dementia. Ann N Y Acad Sci 1228(1):81–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7(6):613–620

    Article  PubMed  CAS  Google Scholar 

  • Borutaite V, Tolkovsky A, Fricker M, Brown G, Coleman M (2018) Neuronal cell death. Physiol Rev 98:813–880

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosetti F, Langenbach R, Weerasinghe GR (2004) Prostaglandin E2 and microsomal prostaglandin E synthase-2 expression are decreased in the cyclooxygenase-2-deficient mouse brain despite compensatory induction of cyclooxygenase-1 and Ca2+-dependent phospholipase A2. J Neurochem 91(6):1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, Belfiore R (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20(9):1236–1246

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Jana M, Pahan K (2018) Aspirin induces lysosomal biogenesis and attenuates amyloid plaque pathology in a mouse model of Alzheimer’s disease via PPARα. J Neurosci 38(30):6682–6699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrasekharan N, Simmons DL (2004) The cyclooxygenases. Genome Biol 5(9):241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Bazan NG (2005a) Endogenous PGE2 regulates membrane excitability and synaptic transmission in hippocampal CA1 pyramidal neurons. J Neurophysiol 93(2):929–941

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Bazan NG (2005b) Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat 77(1–4):65–76

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Magee JC, Bazan NG (2002) Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol 87(6):2851–2857

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Yang J, Wei Y, Wei X (2020) Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol 17(1):36–49

    Article  PubMed  CAS  Google Scholar 

  • Choi S-H, Bosetti F (2009) Cyclooxygenase-1 null mice show reduced neuroinflammation in response to β-amyloid. Aging 1(2):234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi SH, Langenbach R, Bosetti F (2008) Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J 22(5):1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Choi S-H, Aid S, Bosetti F (2009) The distinct roles of cyclooxygenase-1 and-2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 30(4):174–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chuang D-M, Hough C, Senatorov VV (2005) Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 45:269–290

    Article  PubMed  CAS  Google Scholar 

  • Davis KA, Bishara D, Molokhia M, Mueller C, Perera G, Stewart RJ (2021) Aspirin in people with dementia, long-term benefits, and harms: a systematic review. Eur J Clin Pharmacol 77:943–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Filippo M, Sarchielli P, Picconi B, Calabresi P (2008) Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci 29(8):402–412

    Article  PubMed  Google Scholar 

  • Etminan M, Gill S, Samii A (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ 327(7407):128. https://doi.org/10.1136/bmj.327.7407.128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM, Yan S, Schmidt AM, Chen JX (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 24(4):1043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira ST, Clarke JR, Bomfim TR, De Felice FG (2014) Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement 10(1):S76–S83

    PubMed  Google Scholar 

  • Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8(1):303–333

    Article  PubMed  CAS  Google Scholar 

  • Förstl H, Levy R (1991) On certain peculiar diseases of old age. Hist Psychiatry 2:71–101

    Article  PubMed  Google Scholar 

  • Gilroy DW (2005) The role of aspirin-triggered lipoxins in the mechanism of action of aspirin. Prostaglandins Leukot Essent Fatty Acids 73(3–4):203–210

    Article  PubMed  CAS  Google Scholar 

  • Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Investig 116(1):4–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan P-P, Ding W-Y, Wang P (2022) Molecular mechanism of acetylsalicylic acid in improving learning and memory impairment in APP/PS1 transgenic mice by inhibiting the abnormal cell cycle re-entry of neurons. Front Mol Neurosci 15:1006216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR (2020) A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol 11:456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris RE, Beebe-Donk J, Doss H, Doss DB (2005) Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade. Oncol Rep 13(4):559–583

    PubMed  CAS  Google Scholar 

  • Harrison SL, Ding J, Tang EY, Siervo M, Robinson L, Jagger C, Stephan BC (2014) Cardiovascular disease risk models and longitudinal changes in cognition: a systematic review. PLoS ONE 9(12):e114431

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmer B, Archelos JJ, Hartung H-P (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3(4):291–301

    Article  PubMed  CAS  Google Scholar 

  • Hölscher C (1995) Inhibitors of cyclooxygenases produce amnesia for a passive avoidance task in the chick. Eur J Neurosci 7(6):1360–1365

    Article  PubMed  Google Scholar 

  • Huber SJ, Shuttleworth EC, Paulson GW, Bellchambers MJ, Clapp LE (1986) Cortical vs subcortical dementia: neuropsychological differences. Arch Neurol 43(4):392–394

    Article  PubMed  CAS  Google Scholar 

  • Leglera DF, Brucknera M, Uetz-von Allmena E, Krausea (2010) Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. Int J Biochem Cell Biol 42(2):198–201

    Article  Google Scholar 

  • Li H, Li W, Zhang X, Ma X-C, Zhang R-W (2021) Aspirin use on incident dementia and mild cognitive decline: a systematic review and meta-analysis. Front Aging Neurosci 12:578071

    Article  PubMed  PubMed Central  Google Scholar 

  • Maher F, Nolan Y, Lynch MA (2005) Downregulation of IL-4-induced signalling in hippocampus contributes to deficits in LTP in the aged rat. Neurobiol Aging 26(5):717–728

    Article  PubMed  CAS  Google Scholar 

  • Marquis-Gravel G, Roe MT, Harrington RA, Muñoz D, Hernandez AF, Jones WS (2019) Revisiting the role of aspirin for the primary prevention of cardiovascular disease. Circulation 140(13):1115–1124

    Article  PubMed  CAS  Google Scholar 

  • Medala VK, Gollapelli B, Dewanjee S, Ogunmokun G, Kandimalla R, Vallamkondu J (2021) Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in Alzheimer’s disease. J Neurosci Res 99(4):1120–1135

    Article  PubMed  CAS  Google Scholar 

  • Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs DH, LaFerla FM (2013) Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease–like pathology in mice. Am J Pathol 182(5):1780–1789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melo HM (2019) Potential effects of aspirin on lysosomal biogenesis and amyloid-β clearance: an old drug and novel insights in alzheimer’s disease therapy. J Neurosci 39(2):197–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menon PK, Koistinen NA, Iverfeldt K, Ström A-L (2019) Phosphorylation of the amyloid precursor protein (APP) at Ser-675 promotes APP processing involving meprin β. J Biol Chem 294(47):17768–17776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63(9):901–910

    Article  PubMed  CAS  Google Scholar 

  • Mistridis P, Krumm S, Monsch AU, Berres M, Taylor KI (2015) The 12 years preceding mild cognitive impairment due to Alzheimer’s disease: the temporal emergence of cognitive decline. J Alzheimers Dis 48(4):1095–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy MP, LeVine H III (2010) Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 19(1):311–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray H, O’Connor J (2003) A role for COX-2 and p38 mitogen activated protein kinase in long-term depression in the rat dentate gyrus in vitro. Neuropharmacology 44(3):374–380

    Article  PubMed  CAS  Google Scholar 

  • Naka H, Nomura E, Kitamura J, Imamura E, Wakabayashi S, Matsumoto M (2013) Antiplatelet therapy as a risk factor for microbleeds in intracerebral hemorrhage patients: analysis using specific antiplatelet agents. J Stroke Cerebrovasc Dis 22(6):834–840

    Article  PubMed  Google Scholar 

  • Nguyen TN, Chen LJ, Trares K, Stocker H, Holleczek B, Beyreuther K, Brenner H, Schöttker B (2022) Long-term low-dose acetylsalicylic use shows protective potential for the development of both vascular dementia and Alzheimer’s disease in patients with coronary heart disease but not in other individuals from the general population: results from two large cohort studies. Alzheimer’s Res Ther 14(1):75

    Article  CAS  Google Scholar 

  • Niikura T, Tajima H, Kita Y (2006) Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Curr Neuropharmacol 4(2):139–147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nilsson SE, Johansson B, Takkinen S, Berg S, Zarit S, McClearn G, Melander A (2003) Does aspirin protect against Alzheimer’s dementia? A study in a Swedish population-based sample aged ≥ 80 years. Eur J Clin Pharmacol 59(4):313–319. https://doi.org/10.1007/s00228-003-0618-y

    Article  PubMed  CAS  Google Scholar 

  • Ogunmokun G, Dewanjee S, Chakraborty P, Valupadas C, Chaudhary A, Kolli V, Anand U, Vallamkondu J, Goel P, Paluru HP, Gill KD (2021) The potential role of cytokines and growth factors in the pathogenesis of Alzheimer’s disease. Cells 10(10):2790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel D, Roy A, Kundu M, Jana M, Luan C-H, Gonzalez FJ, Pahan K (2018) Aspirin binds to PPARα to stimulate hippocampal plasticity and protect memory. Proc Natl Acad Sci 115(31):E7408–E7417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patrono C (2015) The multifaceted clinical readouts of platelet inhibition by low-dose aspirin. J Am Coll Cardiol 66(1):74–85

    Article  PubMed  CAS  Google Scholar 

  • Peavy GM, Jacobson MW, Goldstein JL, Hamilton JM, Kane A, Gamst AC, Lessig SL, Lee JC, Corey-Bloom J (2010) Cognitive and functional decline in Huntington’s disease: dementia criteria revisited. Mov Disord 25(9):1163–1169

    Article  PubMed  PubMed Central  Google Scholar 

  • Rall JM, Mach SA, Dash PK (2003) Intrahippocampal infusion of a cyclooxygenase-2 inhibitor attenuates memory acquisition in rats. Brain Res 968(2):273–276

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Escalera F, Pinney JJ, Owlett L, Ahmed H, Thakar J, Olschowka JA, Elliott MR, O’Banion MK (2019) IL-1β-driven amyloid plaque clearance is associated with an expansion of transcriptionally reprogrammed microglia. J Neuroinflammation 16:1–17

    Article  Google Scholar 

  • Rizwan S, Idrees A, Ashraf M, Ahmed T (2016) Memory-enhancing effect of aspirin is mediated through opioid system modulation in an AlCl3-induced neurotoxicity mouse model. Exp Ther Med 11(5):1961–1970. https://doi.org/10.3892/etm.2016.3147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy ER, Wang B, Wan YW, Chiu G, Cole A, Yin Z, Propson NE, Xu Y, Jankowsky JL, Liu Z, Lee VM (2020) Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Investig 130(4):1912–1930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan J, Storey E, Murray AM, Woods RL, Wolfe R, Reid CM, Nelson MR, Chong TT, Williamson JD, Ward SA, Lockery JE (2020) Randomized placebo-controlled trial of the effects of aspirin on dementia and cognitive decline. Neurology 95(3):e320–e331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha RN, Pahan K (2006) Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int 49(2):154–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sang N, Chen C (2006) Lipid signaling and synaptic plasticity. Neuroscientist 12(5):425–434

    Article  PubMed  CAS  Google Scholar 

  • Sang N, Zhang J, Marcheselli V, Bazan NG, Chen C (2005) Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J Neurosci 25(43):9858–9870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato T, Ishida T, Irifune M, Tanaka K-I, Hirate K, Nakamura N, Nishikawa T (2007) Effect of NC-1900, an active fragment analog of arginine vasopressin, and inhibitors of arachidonic acid metabolism on performance of a passive avoidance task in mice. Eur J Pharmacol 560(1):36–41

    Article  PubMed  CAS  Google Scholar 

  • Sezgin M, Bilgic B, Tinaz S, Emre M (2019) Parkinson’s disease dementia and Lewy body disease. Semin Neurol 39:274–282

    Article  PubMed  Google Scholar 

  • Sharifzadeh M, Tavasoli M, Soodi M, Mohammadi-Eraghi S, Ghahremani MH, Roghani A (2006) A time course analysis of cyclooxygenase-2 suggests a role in spatial memory retrieval in rats. Neurosci Res 54(3):171–179

    Article  PubMed  CAS  Google Scholar 

  • Shaw KN, Commins S, O’Mara SM (2003) Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factor. Eur J Neurosci 17(11):2438–2446

    Article  PubMed  Google Scholar 

  • Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56(3):387–437

    Article  PubMed  CAS  Google Scholar 

  • Stewart WF, Kawas C, Corrada M, Metter EJ (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48(3):626–632. https://doi.org/10.1212/wnl.48.3.626

    Article  PubMed  CAS  Google Scholar 

  • Suresh J, Khor IW, Kaur P, Heng HL, Torta F, Dawe GS, Tai ES, Tolwinski NS (2021) Shared signaling pathways in Alzheimer’s and metabolic disease may point to new treatment approaches. FEBS J 288(12):3855–3873

    Article  PubMed  CAS  Google Scholar 

  • Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y, Murayama S, Endo T, Sakaguchi G, Kato A, Kitazume S (2008) Interleukin-1β up-regulates TACE to enhance α-cleavage of APP in neurons: resulting decrease in Aβ production. J Neurochem 104(5):1387–1393

    Article  PubMed  CAS  Google Scholar 

  • Teather LA, Packard MG, Bazan NG (2002) Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation. Learn Mem 9(1):41–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Teeling J, Cunningham C, Newman TA, Perry V (2010) The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1. Brain Behav Immun 24(3):409–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thal DR, Griffin WST, Braak H (2008) Parenchymal and vascular Aβ-deposition and its effects on the degeneration of neurons and cognition in Alzheimer’s disease. J Cell Mol Med 12(5b):1848–1862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57(4):1105–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Tortosa E, Avila J, Pérez M (2006) Acetylsalicylic acid decreases tau phosphorylation at serine 422. Neurosci Lett 396(1):77–80

    Article  PubMed  CAS  Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232–235

    Article  PubMed  CAS  Google Scholar 

  • Vane JR, Botting RM (1998) Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med 104(3S1):2S-8S

    Article  PubMed  CAS  Google Scholar 

  • Vilček J, Feldmann M (2004) Historical review: cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci 25(4):201–209

    Article  PubMed  Google Scholar 

  • Vital Trial Collaborative Group (2003) Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. J Intern Med 254(1):67–75

    Article  Google Scholar 

  • Voilley N (2004) Acid-sensing ion channels (ASICs): new targets for the analgesic effects of non-steroid anti-inflammatory drugs (NSAIDs). Curr Drug Targets Inflamm Allergy 3(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21(20):8026–8033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YP, Wu Y, Li LY, Zheng J, Liu RG, Zhou JP, Yuan SY, Shang Y, Yao SL (2011) Aspirin-triggered lipoxin A4attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells. J Neuroinflammation 8(1):1–12

    Article  Google Scholar 

  • Wang W, Ye SD, Zhou KQ, Wu LM, Huang YN (2012) High doses of salicylate and aspirin are inhibitory on acid-sensing ion channels and protective against acidosis-induced neuronal injury in the rat cortical neuron. J Neurosci Res 90(1):267–277

    Article  PubMed  CAS  Google Scholar 

  • Wang M-M, Miao D, Cao X-P, Tan L, Tan L (2018) Innate immune activation in Alzheimer’s disease. Ann Transl Med 6(10):177

    Article  PubMed  PubMed Central  Google Scholar 

  • Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34(3):463–477

    Article  PubMed  CAS  Google Scholar 

  • Weng J, Zhao G, Weng L, Guan J, Initiative ASDN (2021) Aspirin using was associated with slower cognitive decline in patients with Alzheimer’s disease. PLoS ONE 16(6):e0252969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • World Health Organization (2019) Risk reduction of cognitive decline and dementia: WHO guidelines. World Health Organization, Geneva

    Google Scholar 

  • Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11(2):371–386

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Chen C (2008) Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 14(14):1443–1451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H, Zhang J, Andreasson K, Chen C (2008) COX-2 oxidative metabolism of endocannabinoids augments hippocampal synaptic plasticity. Mol Cell Neurosci 37(4):682–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yermakova AV, Rollins J, Callahan LM, Rogers J, O’Banion MK (1999) Cyclooxygenase-1 in human Alzheimer and control brain: quantitative analysis of expression by microglia and CA3 hippocampal neurons. J Neuropathol Exp Neurol 58(11):1135–1146

    Article  PubMed  CAS  Google Scholar 

  • Zheng SL, Roddick AJ (2019) Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis. JAMA 321(3):277–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu P, Genc A, Zhang X, Zhang J, Bazan NG, Chen C (2005) Heterogeneous expression and regulation of hippocampal prostaglandin E2 receptors. J Neurosci Res 81(6):817–826

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MG, EA, MA and NK have gathered study data and written the manuscript. MG, MS, MK, SN, RJA have provided critical revision of final manuscript. MG have contributed to the study design. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Masoumeh Gholami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical standard

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M., Sadegh, M., Koroush-arami, M. et al. Targeting memory loss with aspirin, a molecular mechanism perspective for future therapeutic approaches. Inflammopharmacol 31, 2827–2842 (2023). https://doi.org/10.1007/s10787-023-01347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01347-1

Keywords

Navigation