Skip to main content

Advertisement

Log in

Oxymatrine-mediated prevention of amyloid β-peptide-induced apoptosis on Alzheimer’s model PC12 cells: in vitro cell culture studies and in vivo cognitive assessment in rats

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a major neurological disease affecting elderly individuals worldwide. Existing drugs only reduce the symptoms of the disease without addressing the underlying causes. Commonly, Aβ25–35 peptide aggregation is the main reason for AD development. Recently, the discovery of multiple protein-targeting molecules has provided a new strategy for treating AD. This study demonstrates the neuroprotective potential of oxymatrine against multiple mechanisms, such as acetylcholinesterase, mitochondrial damage, and β-amyloid-induced cell toxicity. The in vitro cell culture studies showed that oxymatrine possesses significant potential to inhibit acetylcholine esterase and promotes antioxidant, antiapoptotic effects while preventing Aβ25–35 peptide aggregation in PC12 cells. Furthermore, oxymatrine protects PC12 cells against Aβ25–35-induced cytotoxicity and down-regulates the reactive oxygen species generation. The in vivo acute toxicological studies confirm the safety of oxymatrine without causing organ damage or death in animals. Overall, this study provided evidence that oxymatrine is an efficient neuroprotective agent, with a potential to be a multifunctional drug for Alzheimer’s disease treatment. These findings present a reliable and synergistic approach for treating AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abeysinghe AADT, Deshapriya RDUS, Udawatte C (2020) Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 256:117996

    Article  CAS  PubMed  Google Scholar 

  • Al-Afifi NA, Alabsi AM, Bakri MM, Ramanathan A (2018) Acute and sub-acute oral toxicity of Dracaena cinnabari resin methanol extract in rats. BMC Complement Altern Med 18(1):1–14

    Article  Google Scholar 

  • AI-Atroshi C, Rene Beulah J, Singamaneni KK, Pretty Diana Cyril C, Neelakandan S, Velmurugan S (2022) Automated speech-based evaluation of mild cognitive impairment and Alzheimer’s disease detection using with deep belief network model. Int J Healthc Manag. https://doi.org/10.1080/20479700.2022.2097764

    Article  Google Scholar 

  • Alexander GC, Karlawish J (2021) The problem of aducanumab for the treatment of Alzheimer disease. Ann Intern Med 174(9):1303–1304

    Article  PubMed  Google Scholar 

  • Arbo BD, Andre-Miral C, Nasre-Nasser RG, Schimith LE, Santos MG, Costa-Silva D, Hort MA (2020) Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci 12:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo-Rodriguez M, Bacskai BJ (2021) Mitochondria and calcium in Alzheimer’s disease: from cell signaling to neuronal cell death. Trends Neurosci 44(2):136–151

    Article  CAS  PubMed  Google Scholar 

  • Caruso G, Godos J, Privitera A, Lanza G, Castellano S, Chillemi A, Grosso G (2022) Phenolic acids and prevention of cognitive decline: polyphenols with a neuroprotective role in cognitive disorders and Alzheimer’s disease. Nutrients 14(4):819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Q, Zhu Y, Cao T, Zhang Y, Chang Z, Liu Y, Zhang Y (2020) Studies on the neuroprotection of osthole on glutamate-induced apoptotic cells and an Alzheimer’s disease mouse model via modulation oxidative stress. Appl Biochem Biotechnol 190(2):634–644

    Article  CAS  PubMed  Google Scholar 

  • El-Ganainy SO, Gowayed MA, Agami M, Mohamed P, Belal M, Farid RM, Hanafy AS (2021) Galantamine nanoparticles outperform oral galantamine in an Alzheimer’s rat model: pharmacokinetics and pharmacodynamics. Nanomedicine 16(15):1281–1296

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Petrov D, Ettcheto M, Abad S, Sánchez-Lopez E, Garcia ML, Camins A (2016) Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016:1–15

    Article  Google Scholar 

  • Franchini S, Linciano P, Puja G, Tait A, Borsari C, Denora N, Sorbi C (2020) Novel dithiolane-based ligands combining sigma and NMDA receptor interactions as potential neuroprotective agents. ACS Med Chem Lett 11(5):1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes LM, Bataglioli JC, Storr T (2020) Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 412:213255

    Article  CAS  Google Scholar 

  • Good PF, Werner P, Hsu A, Olanow CW, Perl DP (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 149(1):21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gul R, Jan H, Lalay G, Andleeb A, Usman H, Zainab R, Abbasi BH (2021) Medicinal plants and biogenic metal oxide nanoparticles: a paradigm shift to treat Alzheimer’s disease. Coatings 11(6):717

    Article  CAS  Google Scholar 

  • Hu KW, Fan HF, Lin HC, Huang JW, Chen YC, Shen CL, Tu LH (2021) Exploring the impact of glyoxal glycation on β-amyloid peptide (Aβ) aggregation in Alzheimer’s disease. J Phys Chem B 125(21):5559–5571

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar M, Sathya S, Gandhi S, Tharra P, Suryanarayanan V, Singh SK, Devi KP (2019) α-bisabolol β-D-fucopyranoside as a potential modulator of β-amyloid peptide induced neurotoxicity: an in vitro & in silico study. Bioorg Chem 88:102935

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar M, Sathya S, Gandhi S, Tharra P, Aarthy M, Balan DJ, Devi KP (2022) α-bisabolol β-D-fucopyranoside inhibits β-amyloid (Aβ) 25–35 induced oxidative stress in Neuro-2a cells via antioxidant approaches. Process Biochem 121:493–503

    Article  CAS  Google Scholar 

  • Karimi SA, Noorbakhsh M, Komaki H, Reza Nikoo M, Hasanein P, Shahidi S, Komaki A (2022) The interactive effects of verapamil and CB1 cannabinoid receptor antagonist/inverse agonist, AM251 on passive avoidance learning and memory in rat. Behav Pharmacol 33(2–3):222–229

    Article  CAS  PubMed  Google Scholar 

  • Lao K, Ji N, Zhang X, Qiao W, Tang Z, Gou X (2019) Drug development for Alzheimer’s disease. J Drug Target 27(2):164–173

    Article  CAS  PubMed  Google Scholar 

  • Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majdi A, Sadigh-Eteghad S, Aghsan SR, Farajdokht F, Vatandoust SM, Namvaran A, Mahmoudi J (2020) Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev Neurosci 31(4):391–413

    Article  CAS  PubMed  Google Scholar 

  • Matuszyk MM, Garwood CJ, Ferraiuolo L, Simpson JE, Staniforth RA, Wharton SB (2022) Biological and methodological complexities of beta-amyloid peptide: implications for Alzheimer’s disease research. J Neurochem 160(4):434–453

    Article  CAS  PubMed  Google Scholar 

  • Michaels TC, Saric A, Curk S, Bernfur K, Arosio P, Meisl G, Knowles TP (2020) Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat Chem 12(5):445–451

    Article  CAS  PubMed  Google Scholar 

  • Misrani A, Tabassum S, Yang L (2021) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front Aging Neurosci 13:617588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen K, Hoffman H, Chakkamparambil B, Grossberg GT (2021) Evaluation of rivastigmine in Alzheimer’s disease. Neurodegener Dis Manag 11(1):35–48

    Article  PubMed  Google Scholar 

  • Nirale P, Paul A, Yadav KS (2020) Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s. Life Sci 245:117394

    Article  CAS  PubMed  Google Scholar 

  • Okello EJ, Mather J (2020) Comparative kinetics of acetyl-and butyryl-cholinesterase inhibition by green tea catechins| relevance to the symptomatic treatment of Alzheimer’s disease. Nutrients 12(4):1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Shinwari ZK (2018) Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: present status and future opportunities. Front Aging Neurosci 10:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei X, Hu F, Luo F, Huang X, Li X, Xing S, Long D (2022) The neuroprotective effects of alpha-lipoic acid on an experimental model of Alzheimer’s disease in PC12 cells. J Appl Toxicol 42(2):285–294

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Tao H, Wang S, Xiao J, Wang Y, Su H (2021) Dietary intervention with edible medicinal plants and derived products for prevention of Alzheimer’s disease: a compendium of time-tested strategy. J Funct Foods 81:104463

    Article  CAS  Google Scholar 

  • Piemontese L, Tomas D, Hiremathad A, Capriati V, Candeias E, Cardoso SM, Santos MA (2018) Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. J Enzyme Inhib Med Chem 33(1):1212–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu R, Anjali R, Archunan G, Prabhu NM, Pugazhendhi A, Suganthy N (2019) Ecofriendly one pot fabrication of methyl gallate@ ZIF-L nanoscale hybrid as pH responsive drug delivery system for lung cancer therapy. Process Biochem 84:39–52

    Article  Google Scholar 

  • Raju P, Natarajan S (2021) Anticancer, anti-biofilm and antimicrobial activity of fucoidan-loaded zeolitic imidazole framework fabricated by one-pot synthesis method. Appl Nanosci 13:1919–1937

    Article  Google Scholar 

  • Raju P, Arivalagan P, Natarajan S (2020) One-pot fabrication of multifunctional catechin@ ZIF-L nanocomposite: Assessment of antibiofilm, larvicidal and photocatalytic activities. J Photochem Photobiol B 203:111774

    Article  CAS  PubMed  Google Scholar 

  • Raju P, Balakrishnan K, Mishra M, Ramasamy T, Natarajan S (2022) Fabrication of pH responsive FU@ Eu-MOF nanoscale metal organic frameworks for lung cancer therapy. J Drug Deliv Sci Technol 70:103223

    Article  CAS  Google Scholar 

  • Roy J, Tsui KC, Ng J, Fung ML, Lim LW (2021) Regulation of Melatonin and Neurotransmission in Alzheimer’s Disease. Int J Mol Sci 22(13):6841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha K, Sun C, Kamari R, Bettermann K (2020) Current status and future prospects of pathophysiology-based neuroprotective drugs for the treatment of vascular dementia. Drug Discov Today 25(4):793–799

    Article  PubMed  Google Scholar 

  • Stanciu GD, Luca A, Rusu RN, Bild V, Beschea Chiriac SI, Solcan C, Ababei DC (2019) Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules 10(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Kakinen A, Wan X, Moriarty N, Hunt CP, Li Y, Ding F (2021) Spontaneous formation of β-sheet nano-barrels during the early aggregation of Alzheimer’s amyloid beta. Nano Today 38:101125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan SJ, Ismail IS (2020) Potency of selected berries, grapes, and citrus fruit as neuroprotective agents. Evid Based Complement Altern Med 2020:1

    Google Scholar 

  • Terao I, Honyashiki M, Inoue T (2022) Comparative efficacy of lithium and aducanumab for cognitive decline in patients with mild cognitive impairment or Alzheimer’s disease: a systematic review and network meta-analysis. Ageing Res Rev 81:101709

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Chun YS, October N, Yang HO, Maharaj V (2019) Potential of South African medicinal plants targeting the reduction of Aβ42 protein as a treatment of Alzheimer’s disease. J Ethnopharmacol 231:363–373

    Article  CAS  PubMed  Google Scholar 

  • Thoe ES, Fauzi A, Tang YQ, Chamyuang S, Chia AYY (2021) A review on advances of treatment modalities for Alzheimer’s disease. Life Sci 276:119129

    Article  Google Scholar 

  • Tripathi SS, Singh S, Garg G, Kumar R, Verma AK, Singh AK, Rizvi SI (2022) Metformin ameliorates acetaminophen-induced sub-acute toxicity via antioxidant property. Drug Chem Toxicol 45(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yu X, Li L, Zheng J (2014) Inhibition of amyloid-β aggregation in Alzheimer’s disease. Curr Pharm Des 20(8):1223–1243

    Article  PubMed  Google Scholar 

  • Wang CF, Song CY, Wang X, Huang LY, Ding M, Yang H, Bi JZ (2019) Protective effects of melatonin on mitochondrial biogenesis and mitochondrial structure and function in the HEK293-APPswe cell model of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 23(8):3542–3550

    PubMed  Google Scholar 

  • Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Yang Z (2019) Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int J Mol Sci 20(2):381

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H (2020) Research progress on Alzheimer’s disease and resveratrol. Neurochem Res 45(5):989–1006

    Article  PubMed  Google Scholar 

  • Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis 12:1179573520907397

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu N, Huang Y, Jiang Y, Zou L, Liu X, Liu S, Zhu Y (2020) Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice. Oxid Med Cell Longev 2020:1–11

    CAS  Google Scholar 

  • Zhang X, Fu Z, Meng L, He M, Zhang Z (2018) The early events that initiate β-amyloid aggregation in Alzheimer’s disease. Front Aging Neurosci 10:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ding C, Li C, Wang X (2021) Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer’s disease. Adv Clin Chem 103:135–190

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Xu N, Yang X, Ling G, Zhang P (2022) The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer’s disease. Coll Interface Sci Commun 46:100579

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the present study conception and design. YZ and ZW—materials preparation and analysis. CG and LZ—formal analysis and data interpretation and RS—manuscript draft, Reviewing and supervision. All authors read and approved the final version of manuscript.

Corresponding author

Correspondence to Rubo Sui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wang, Z., Gao, C. et al. Oxymatrine-mediated prevention of amyloid β-peptide-induced apoptosis on Alzheimer’s model PC12 cells: in vitro cell culture studies and in vivo cognitive assessment in rats. Inflammopharmacol 31, 2685–2699 (2023). https://doi.org/10.1007/s10787-023-01291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01291-0

Keywords

Navigation