Skip to main content

Advertisement

Log in

Inhibition of CD4 + T cells by fanchinoline via miR506-3p/NFATc1 in Sjögren’s syndrome

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

The hyperproliferation and hyperactivation of CD4 + T cells in salivary gland tissues are hallmarks of Sjögren’s syndrome (SS). Fangchinoline (Fan) is extracted from the root of Stephania tetrandra Moore, which is used for treating rheumatic diseases in many studies. This study aimed to identify the mechanism underlying the inhibition of CD4 + T cells by Fan in the SS model NOD/ShiLtj mice. In vivo, Fan alleviated the dry mouth and lymphocyte infiltration in the salivary gland tissues of the NOD/ShiLtj mice and inhibited the number of CD4 + T cells in the infiltrating focus. In vitro, Fan’s inhibitory effect on the proliferation of mouse primary CD4 + T cells was verified by CFSE and EdU tests. Furthermore, qRT-PCR and WB analysis confirmed that Fan could inhibit the expression of NFATc1 (Nuclear factor of activated T-cells, cytoplasmic 1) by upregulating miR-506-3p. Dual luciferase reporter gene assay suggested that miR-506-3p interacted with NFATc1. CFSE and EdU tests showed that Fan could inhibit the proliferation of CD4 + T cells through miR-506-3p/NFATc1. The key role of NFATc1 in the activation of CD4 + T cells and the high expression of NFATc1 in samples from SS patients suggested that NFATc1 might become a therapeutic target for SS. In vivo, 11R-VIVIT (NFATc1 inhibitor) alleviated SS-like symptoms. This study not only explained the new mechanism of Fan inhibiting proliferation of CD4 + T cells and alleviating SS-like symptoms but also provided NFATc1 as a potential target for the subsequent research and treatment of SS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  • Alessandri C, Ciccia F, Priori R, Astorri E, Guggino G, Alessandro R et al (2017) CD4 T lymphocyte autophagy is upregulated in the salivary glands of primary Sjögren’s syndrome patients and correlates with focus score and disease activity. Arthritis Res Ther 19(1):178

    Article  PubMed  PubMed Central  Google Scholar 

  • Care N, Animals N (2011) Guide for the care and use of laboratory 340 animals. National Academies Press, Washington DC

    Google Scholar 

  • Chen W, Yang F, Xu G, Ma J, Lin J (2021) Follicular helper T cells and follicular regulatory T cells in the immunopathology of primary Sjögren’s syndrome. J Leukoc Biol 109(2):437–447

    Article  CAS  PubMed  Google Scholar 

  • Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518(7537):107–110

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Kim HS, Min KR, Kim Y, Lim HK, Chang YK et al (2000) Anti-inflammatory effects of fangchinoline and tetrandrine. J Ethnopharmacol 69(2):173–179

    Article  CAS  PubMed  Google Scholar 

  • De Vita S, Gandolfo S (2019) Predicting lymphoma development in patients with Sjögren’s syndrome. Expert Rev Clin Immunol 15(9):929–938

    Article  PubMed  Google Scholar 

  • Dinesh P, Kalaiselvan S, Sujitha S, Rasool M (2020) miR-506-3p alleviates uncontrolled osteoclastogenesis via repression of RANKL/NFATc1 signaling pathway. J Cell Physiol 235(12):9497–9509

    Article  CAS  PubMed  Google Scholar 

  • Gülçin I, Elias R, Gepdiremen A, Chea A, Topal F (2010) Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: cepharanthine and fangchinoline. J Enzyme Inhib Med Chem 25(1):44–53

    Article  PubMed  Google Scholar 

  • Huang J, Huang X, Chen Z, Zheng Q, Sun R (2004) Equivalent dose conversion between animals and between animals and humans in pharmacology tests. Chinese J Clin Pharmacol Therapeut 9(9):1069–1072

    Google Scholar 

  • Jang SI, Tandon M, Teos L, Zheng C, Warner BM, Alevizos I (2019) Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren’s syndrome. EBioMedicine 48:526–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CR, Li HL (2018) The value of MiR-146a and MiR-4484 expressions in the diagnosis of anti-SSA antibody positive Sjogren syndrome and the correlations with prognosis. Eur Rev Med Pharmacol Sci 22(15):4800–4805

    PubMed  Google Scholar 

  • Jiang Y, Liu J, Zhou Z, Liu K, Liu C (2020) Fangchinoline protects against renal injury in diabetic nephropathy by modulating the MAPK signaling pathway. Exp Clin Endocrinol Diabetes 128(8):499–505

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Ren S, Chen Y, Zhang A, Zhu Y, Zhang Z et al (2021) Fangchinoline exerts antitumour activity by suppressing the EGFR-PI3K/AKT signalling pathway in colon adenocarcinoma. Oncol Rep 45(1):139–150

    Article  PubMed  Google Scholar 

  • Johansson A, Nyberg WA, Sjöstrand M, Moruzzi N, Bergman P, Khademi M et al (2019) miR-31 regulates energy metabolism and is suppressed in T cells from patients with Sjögren’s syndrome. Eur J Immunol 49(2):313–322

    Article  PubMed  Google Scholar 

  • Lendrem D, Mitchell S, McMeekin P, Bowman S, Price E, Pease CT et al (2014) Health-related utility values of patients with primary Sjögren’s syndrome and its predictors. Ann Rheum Dis 73(7):1362–1368

    Article  PubMed  Google Scholar 

  • Lin TY, Lu CW, Tien LT, Chuang SH, Wang YR, Chang WH et al (2009) Fangchinoline inhibits glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Neurochem Int 54(8):506–512

    Article  CAS  PubMed  Google Scholar 

  • Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5(6):472–484

    Article  CAS  PubMed  Google Scholar 

  • Mandl T, Bredberg A, Jacobsson LT, Manthorpe R, Henriksson G (2004) CD4+ T-lymphocytopenia–a frequent finding in anti-SSA antibody seropositive patients with primary Sjögren’s syndrome. J Rheumatol 31(4):726–728

    PubMed  Google Scholar 

  • Mingueneau M, Boudaoud S, Haskett S, Reynolds TL, Nocturne G, Norton E et al (2016) Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren’s signature correlating with disease activity and glandular inflammation. J Allergy Clin Immunol 137(6):1809-1821.e12

    Article  PubMed  Google Scholar 

  • Negrini S, Emmi G, Greco M, Borro M, Sardanelli F, Murdaca G et al (2022) Sjögren’s syndrome: a systemic autoimmune disease. Clin Exp Med 22(1):9–25

    Article  CAS  PubMed  Google Scholar 

  • Onai N, Tsunokawa Y, Suda M, Watanabe N, Nakamura K, Sugimoto Y et al (1995) Inhibitory effects of bisbenzylisoquinoline alkaloids on induction of proinflammatory cytokines, interleukin-1 and tumor necrosis factor-alpha. Planta Med 61(6):497–501

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Shahane A (2014) The epidemiology of Sjögren’s syndrome. Clin Epidemiol 6:247–255

    PubMed  PubMed Central  Google Scholar 

  • Pontarini E, Verstappen GM, Grigoriadou S, Kroese F, Bootsma H, Bombardieri M (2020) Blocking T cell co-stimulation in primary Sjögren’s syndrome: rationale, clinical efficacy and modulation of peripheral and salivary gland biomarkers. Clin Exp Rheumatol 126(4):222–227

    Google Scholar 

  • Reppert S, Zinser E, Holzinger C, Sandrock L, Koch S, Finotto S (2015) NFATc1 deficiency in T cells protects mice from experimental autoimmune encephalomyelitis. Eur J Immunol 45(5):1426–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romão VC, Talarico R, Scirè CA, Vieira A, Alexander T, Baldini C et al (2018) Sjögren’s syndrome: state of the art on clinical practice guidelines. RMD Open 4(Suppl 1):e000789

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan L, Tong L, Hang L, Fan H (2019) Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoid arthritis-induced rats. Biomed Pharmacother 111:142–150

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Cohen PL (2012) The T cell in Sjogren’s syndrome: force majeure, not spectateur. J Autoimmun 39(3):229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skopouli FN, Fox PC, Galanopoulou V, Atkinson JC, Jaffe ES, Moutsopoulos HM (1991) T cell subpopulations in the labial minor salivary gland histopathologic lesion of Sjögren’s syndrome. J Rheumatol 18(2):210–214

    CAS  PubMed  Google Scholar 

  • Song LR (2001) Dictionary of modern medicine. People’s Medical Publishing House, Beijing

    Google Scholar 

  • Sun L, Hu L, Cogdell D, Lu L, Gao C, Tian W et al (2017) MIR506 induces autophagy-related cell death in pancreatic cancer cells by targeting the STAT3 pathway. Autophagy 13(4):703–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstappen GM, Kroese F, Bootsma H (2019) T cells in primary Sjögren’s syndrome: targets for early intervention. Rheumatology (Oxford) 60(7):3088–3098

    Article  Google Scholar 

  • Villa T, Kim M, Oh S (2020) Fangchinoline has an anti-arthritic effect in two animal models and in IL-1β-stimulated human FLS cells. Biomol Therapeut 28(5):414–422

    Article  CAS  Google Scholar 

  • Wen SY, Lin Y, Yu YQ, Cao SJ, Zhang R, Yang XM et al (2015) miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene 34(6):717–725

    Article  CAS  PubMed  Google Scholar 

  • Wu SF, Chang CB, Hsu JM, Lu MC, Lai NS, Li C et al (2017) Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling. Arthritis Res Ther 19(1):183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Ma JF, Chang C, Xu T, Gao CY, Gershwin ME et al (2021) Immunobiology of T cells in Sjögren’s syndrome. Clin Rev Allergy Immunol 60(1):111–131

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Lin C, Zhang Y, Zhang X, Zhang C, Zhang P et al (2017) miR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Prolif 50(3):e12341

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Hong G, Li S, Liu Q, Song F, Zhao J et al (2020) Fangchinoline protects against bone loss in OVX mice via inhibiting osteoclast formation, bone resorption and RANKL-induced signaling. Int J Biol Sci 16(2):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81771089), and the Biological sample bank project of Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (YBKB201907).

Funding

National Natural Science Foundation of China, 81771089, Chuangqi Yu, Biological sample bank project of Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, YBKB201907, Chuangqi Yu

Author information

Authors and Affiliations

Authors

Contributions

YXS and CQY designed the study; YXS, JYF, TLZ, JHY, YFL, QL performed the experiments and collected and analyzed the data; YXS, JYF and CQY wrote and revised the manuscript. YXS and JYF contributed equally to this work.

Corresponding author

Correspondence to Chuangqi Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Fu, J., Zhan, T. et al. Inhibition of CD4 + T cells by fanchinoline via miR506-3p/NFATc1 in Sjögren’s syndrome. Inflammopharmacol 31, 2431–2443 (2023). https://doi.org/10.1007/s10787-023-01279-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01279-w

Keywords

Navigation