Skip to main content

Advertisement

Log in

The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM)

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 21 (FGF21) is a peptide hormone mainly synthesized and released from the liver. FGF21 acts on FGF21 receptors (FGFRs) and β-Klotho, which is a transmembrane co-receptor. In type 2 diabetes mellitus (T2DM), inflammatory disorders stimulate the release of FGF21 to overcome insulin resistance (IR). FGF21 improves insulin sensitivity and glucose homeostasis. Metformin which is used in the management of T2DM may increase FGF21 expression. Accordingly, the objective of this review was to clarify the metformin effect on FGF21 in T2DM. FGF21 level and expression of FGF2Rs are dysregulated in T2DM due to the development of FGF21 resistance. Metformin stimulates the hepatic expression of FGF21/FGF2Rs by different signaling pathways. Besides, metformin improves the expression of β-Klotho which improves FGF21 sensitivity. In conclusion, metformin advances FGF21 signaling and decreases FGF21 resistance in T2DM, and this might be an innovative mechanism for metformin in the enhancement of glucose homeostasis and metabolic disorders in T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aatsinki SM, Buler M, Salomäki H, Koulu M, Pavek P, Hakkola J (2014) Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions. Br J Pharmacol 171:2351–2363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adela R, Banerjee SK (2015) GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J Diabet Res 2015:1–4

    Google Scholar 

  • Al-Kuraishy HM, Al-Gareeb AI, Waheed HJ, Al-Maiahy TJ (2018) Differential effect of metformin and/or glyburide on apelin serum levels in patients with type 2 diabetes mellitus: concepts and clinical practice. J Adv Pharm Technol Res 9:80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Kuraishy HM, Al-Gareeb AI, Alblihed M, Cruz-Martins N, Batiha GE (2021) COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type II diabetes mellitus: the anti-inflammatory role of metformin. Front Med (lausanne) 8:644295

    PubMed  Google Scholar 

  • Al-kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Nadwa EH, Albogami SM, Alorabi M, Saad HM, Batiha GE-S (2022) Metformin and growth differentiation factor 15 (GDF15) in type 2 diabetes mellitus: a hidden treasure. J Diabet 14:806–814

    CAS  Google Scholar 

  • Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE-S (2023) Long-term use of metformin and Alzheimer’s disease: beneficial or detrimental effects. Inflammopharmacology. https://doi.org/10.1007/s10787-023-01163-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE-S (2023) Long-term use of metformin and Alzheimer’s disease: beneficial or detrimental effects. Inflammopharmacology 31(3):1107–1115

    CAS  PubMed  Google Scholar 

  • Arafat A, Kaczmarek P, Skrzypski M, Pruszyńska-Oszmalek E, Kołodziejski P, Szczepankiewicz D, Sassek M, Wojciechowicz T, Wiedenmann B, Pfeiffer A (2013) Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis? Diabetologia 56:588–597

    CAS  PubMed  Google Scholar 

  • Archer A, Venteclef N, Mode A, Pedrelli M, Gabbi C, Clément K, Parini P, Gustafsson J-Å, Korach-André M (2012) Fasting-induced FGF21 is repressed by LXR activation via recruitment of an HDAC3 corepressor complex in mice. Mol Endocrinol 26:1980–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arner P, Pettersson A, Mitchell PJ, Dunbar JD, Kharitonenkov A, Rydén M (2008) FGF21 attenuates lipolysis in human adipocytes–a possible link to improved insulin sensitivity. FEBS Lett 582:1725–1730

    CAS  PubMed  Google Scholar 

  • Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Sabatier J-M, Saad HM, Batiha GE-S (2022) The potential role of growth differentiation factor 15 in COVID-19: a corollary subjective effect or not? Diagnostics 12:2051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahne E, Hansen M, Brønden A, Sonne DP, Vilsbøll T, Knop FK (2016) Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin. Diabet Obes Metab 18:955–961

    CAS  Google Scholar 

  • Bai F, Liu Y, Tu T, Li B, Xiao Y, Ma Y, Qin F, Xie J, Zhou S, Liu Q (2019) Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway. Lipids Health Dis 18:1–9

    Google Scholar 

  • Barb D, Bril F, Kalavalapalli S, Cusi K (2019) Plasma fibroblast growth factor 21 is associated with severity of nonalcoholic steatohepatitis in patients with obesity and type 2 diabetes. J Clin Endocrinol Metab 104:3327–3336

    PubMed  PubMed Central  Google Scholar 

  • Campderrós L, Moure R, Cairó M, Gavaldà-Navarro A, Quesada-López T, Cereijo R, Giralt M, Villarroya J, Villarroya F (2019) Brown adipocytes secrete GDF15 in response to thermogenic activation. Obesity 27:1606–1616

    PubMed  Google Scholar 

  • Chau MD, Gao J, Yang Q, Wu Z, Gromada J (2010) Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathway. Proc Natl Acad Sci 107:12553–12558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, DeFronzo RA, Tripathy D (2009) Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabet Care 32:1542–1546

    CAS  Google Scholar 

  • Chen C, Cheung BM, Tso AW, Wang Y, Law LS, Ong KL, Wat NM, Xu A, Lam KS (2011) High plasma level of fibroblast growth factor 21 is an Independent predictor of type 2 diabetes: a 5.4-year population-based prospective study in Chinese subjects. Diabetes Care 34:2113–2115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho K, Chung JY, Cho SK, Shin H-W, Jang I-J, Park J-W, Yu K-S, Cho J-Y (2015) Antihyperglycemic mechanism of metformin occurs via the AMPK/LXRα/POMC pathway. Sci Rep 5:8145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christodoulides C, Dyson P, Sprecher D, Tsintzas K, Karpe F (2009) Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab 94:3594–3601

    CAS  PubMed  Google Scholar 

  • Cuevas-Ramos D, Almeda-Valdes P, Gómez-Pérez FJ, Meza-Arana CE, Cruz-Bautista I, Arellano-Campos O, Navarrete-López M, Aguilar-Salinas CA (2010) Daily physical activity, fasting glucose, uric acid, and body mass index are independent factors associated with serum fibroblast growth factor 21 levels. Eur J Endocrinol 163:469–477

    CAS  PubMed  Google Scholar 

  • Cyphert HA, Alonge KM, Ippagunta SM, Hillgartner FB (2014) Glucagon stimulates hepatic FGF21 secretion through a PKA-and EPAC-dependent posttranscriptional mechanism. PLoS ONE 9:e94996

    PubMed  PubMed Central  Google Scholar 

  • Dahlman I, Nilsson M, Gu HF, Lecoeur C, Efendic S, Östenson CG, Brismar K, Gustafsson J-Å, Froguel P, Vaxillaire M (2009) Functional and genetic analysis in type 2 diabetes of liver X receptor alleles–a cohort study. BMC Med Genet 10:1–13

    Google Scholar 

  • DeFronzo RA, Buse JB, Kim T, Burns C, Skare S, Baron A, Fineman M (2016) Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia 59:1645–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Delfín J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F (2012) TNF-α represses β-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology 153:4238–4245

    PubMed  Google Scholar 

  • Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier E (2010) Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59:2781–2789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340

    CAS  PubMed  Google Scholar 

  • Guo C, Zhao L, Li Y, Deng X, Yuan G (2021) Relationship between FGF21 and drug or nondrug therapy of type 2 diabetes mellitus. J Cell Physiol 236:55–67

    CAS  PubMed  Google Scholar 

  • Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Véniant MM, Xu J (2012) Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 153:69–80

    CAS  PubMed  Google Scholar 

  • Herman R, Kravos NA, Jensterle M, Janež A, Dolžan V (2022) Metformin and insulin resistance: a review of the underlying mechanisms behind changes in GLUT4-mediated glucose transport. Int J Mol Sci 23:1264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua S, Liu Q, Li J, Fan M, Yan K, Ye D (2021) Beta-klotho in type 2 diabetes mellitus: From pathophysiology to therapeutic strategies. Rev Endocr Metab Disord 22:1091–1109

    CAS  PubMed  Google Scholar 

  • Huddar A, Govindaraj P, Chiplunkar S, Deepha S, Ponmalar JJ, Philip M, Nagappa M, Narayanappa G, Mahadevan A, Sinha S (2021) Serum fibroblast growth factor 21 and growth differentiation factor 15: two sensitive biomarkers in the diagnosis of mitochondrial disorders. Mitochondrion 60:170–177

    CAS  PubMed  Google Scholar 

  • Ikram M, Magdy Beshbishy A, Kifayatullah M, Olukanni A, Zahoor M, Naeem M, Amin M, Shah M, Abdelaziz AS, Ullah R (2020) Chemotherapeutic potential of Carthamus oxycantha root extract as antidiarrheal and in vitro antibacterial activities. Antibiotics 9:226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kappe C, Patrone C, Holst JJ, Zhang Q, Sjöholm Å (2013) Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol 48:322–332

    CAS  PubMed  Google Scholar 

  • Kar E, Alataş Ö, Şahıntürk V, Öz S (2022) Effects of metformin on lipopolysaccharide induced inflammation by activating fibroblast growth factor 21. Biotech Histochem 97:44–52

    CAS  PubMed  Google Scholar 

  • Kaufman A, Abuqayyas L, Denney WS, Tillman EJ, Rolph T (2020) AKR-001, an Fc-FGF21 analog, showed sustained pharmacodynamic effects on insulin sensitivity and lipid metabolism in type 2 diabetes patients. Cell Rep Med 1:100057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenechukwu FC, Nnamani DO, Momoh MA, Attama AA (2022) Enhanced circulation longevity and pharmacodynamics of metformin from surface-modified nanostructured lipid carriers based on solidified reverse micellar solutions. Heliyon 8:e09100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Jeong YT, Kim SH, Jung HS, Park KS, Lee H-Y, Lee M-S (2013) Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem Biophys Res Commun 440:76–81

    CAS  PubMed  Google Scholar 

  • Kim KH, Lee M-S (2015) FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J Endocrinol 226:R1-16

    CAS  PubMed  Google Scholar 

  • Kim JH, Bae KH, Choi YK, Go Y, Choe M, Jeon YH, Lee HW, Koo SH, Perfield J, Harris R (2015) Fibroblast growth factor 21 analogue LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function. Diabet Obes Metab 17:161–169

    CAS  Google Scholar 

  • Kim EK, Lee SH, Jhun JY, Byun JK, Jeong JH, Lee SY, Kim JK, Choi JY, Cho ML (2016) Metformin prevents fatty liver and improves balance of white/brown adipose in an obesity mouse model by inducing FGF21. Mediat Inflamm 2016:1–13

    Google Scholar 

  • Kim E-K, Lee SH, Lee S-Y, Kim J-k, Jhun JY, Na HS, Kim S-Y, Choi JY, Yang CW, Park S-H (2018) Metformin ameliorates experimental-obesity-associated autoimmune arthritis by inducing FGF21 expression and brown adipocyte differentiation. Exp Mol Med 50:e432–e432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovatchev B, Cobelli C (2016) Glucose variability: timing, risk analysis, and relationship to hypoglycemia in diabetes. Diabetes Care 39:502–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson KR, Chaffin AT, Goodson ML, Fang Y, Ryan KK (2019) Fibroblast growth factor-21 controls dietary protein intake in male mice. Endocrinology 160:1069–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Li L, Yang M, Liu H, Boden G, Yang G (2012) The effects of fibroblast growth factor-21 knockdown and over-expression on its signaling pathway and glucose–lipid metabolism in vitro. Mol Cell Endocrinol 348:21–26

    PubMed  Google Scholar 

  • Li Y, Wong K, Giles A, Jiang J, Lee JW, Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L (2014) Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 146(539–549):e537

    Google Scholar 

  • Li Q, Jia S, Xu L, Li B, Chen N (2019) Metformin-induced autophagy and irisin improves INS-1 cell function and survival in high-glucose environment via AMPK/SIRT1/PGC-1α signal pathway. Food Sci Nutr 7:1695–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M-J, Dai W, Scott MJ, Li R, Zhang Y-Q, Yang Y, Chen L-Z, Huang X-S (2017) Metformin improves nonalcoholic fatty liver disease in obese mice via down-regulation of apolipoprotein A5 as part of the AMPK/LXRα signaling pathway. Oncotarget 8:108802

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Yang K, Yang J, Xiao W, Le Y, Yu F, Gu L, Lang S, Tian Q, Jin T (2019) Liver-derived fibroblast growth factor 21 mediates effects of glucagon-like peptide-1 in attenuating hepatic glucose output. EBioMedicine 41:73–84

    PubMed  PubMed Central  Google Scholar 

  • Luo F, Guo Y, Ruan G, Li X (2016) Metformin promotes cholesterol efflux in macrophages by up-regulating FGF21 expression: a novel anti-atherosclerotic mechanism. Lipids Health Dis 15:1–2

    Google Scholar 

  • Mai K, Andres J, Biedasek K, Weicht J, Bobbert T, Sabath M, Meinus S, Reinecke F, Möhlig M, Weickert MO (2009) Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes 58:1532–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maida A, Lamont B, Cao X, Drucker D (2011) Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia 54:339–349

    CAS  PubMed  Google Scholar 

  • Majeed Y, Upadhyay R, Lakshmanan A, Triggle C, Ding H (2016) Down-regulation of Erk and sirt1 signaling may lead to reduced Fgf-21 sensitivity in a mouse model of diabetes. Qatar Found Annu Res Conf Proceed 2016:HBPP1804

    Google Scholar 

  • Markowicz-Piasecka M, Sadkowska A, Huttunen KM, Podsiedlik M, Mikiciuk-Olasik E, Sikora J (2020) An investigation into the pleiotropic activity of metformin a glimpse of haemostasis. Eur J Pharmacol 872:172984

    CAS  PubMed  Google Scholar 

  • Nie F, Wu D, Du H, Yang X, Yang M, Pang X, Xu Y (2017) Serum klotho protein levels and their correlations with the progression of type 2 diabetes mellitus. J Diabet Complicat 31:594–598

    Google Scholar 

  • Nygaard EB, Vienberg SG, Ørskov C, Hansen HS, Andersen B (2012) Metformin stimulates FGF21 expression in primary hepatocytes. Exp Diabet Res. 2012:465282

    Google Scholar 

  • Nygaard EB, Møller CL, Kievit P, Grove KL, Andersen B (2014) Increased fibroblast growth factor 21 expression in high-fat diet-sensitive non-human primates (Macaca mulatta). Int J Obes 38:183–191

    CAS  Google Scholar 

  • Ojha A, Ojha U, Mohammed R, Chandrashekar A, Ojha H (2019) Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin Pharmacol 11:57–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omar BA, Andersen B, Hald J, Raun K, Nishimura E, Ahrén B (2014) Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes 63:101–110

    CAS  PubMed  Google Scholar 

  • Ouyang J, Parakhia RA, Ochs RS (2011) Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 286:1–11

    CAS  PubMed  Google Scholar 

  • Pérez-Martí A, Sandoval V, Marrero PF, Haro D, Relat J (2017) Nutritional regulation of fibroblast growth factor 21: from macronutrients to bioactive dietary compounds. Horm Mol Biol Clin Investig 30:20160034

    Google Scholar 

  • Pinyopornpanish K, Leerapun A, Pinyopornpanish K, Chattipakorn N (2021) Effects of metformin on hepatic steatosis in adults with nonalcoholic fatty liver disease and diabetes: insights from the cellular to patient levels. Gut Liver 15:827

    PubMed  PubMed Central  Google Scholar 

  • Prudhomme GJ, Kurt M, Qinghua WangPrudhomme GJ, Kurt M, Wang Q (2022) Pathobiology of the klotho antiaging protein and therapeutic considerations. Front Aging. https://doi.org/10.3389/fragi.2022.931331

    Article  PubMed  Google Scholar 

  • Qiao YC, Chen YL, Pan YH, Ling W, Tian F, Zhang XX, Zhao HL (2017) Changes of transforming growth factor beta 1 in patients with type 2 diabetes and diabetic nephropathy: A PRISMA-compliant systematic review and meta-analysis. Medicine 96(15):e6583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed HA, Al-Kuraishy HM, Al-Gareeb AI, Hussien NR, Al-Nami MS (2019) Effects of diabetic pharmacotherapy on prolactin hormone in patients with type 2 diabetes mellitus: Bane or Boon. J Adv Pharm Technol Res 10:163

    PubMed  PubMed Central  Google Scholar 

  • Reinehr T, Woelfle J, Wunsch R, Roth CL (2012) Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: a longitudinal analysis. J Clin Endocrinol Metab 97:2143–2150

    CAS  PubMed  Google Scholar 

  • Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers M, Heineman B, Dushay J (2019) Increased fructose consumption has sex-specific effects on fibroblast growth factor 21 levels in humans. Obes Sci Pract 5:503–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samms RJ, Lewis JE, Norton L, Stephens FB, Gaffney CJ, Butterfield T, Smith DP, Cheng CC, Perfield JW, Adams AC (2017) FGF21 is an insulin-dependent postprandial hormone in adult humans. J Clin Endocrinol Metab 102:3806–3813

    PubMed  PubMed Central  Google Scholar 

  • Slusher A, Whitehurst M, Zoeller R, Mock J, Maharaj M, Huang C-J (2015) Attenuated fibroblast growth factor 21 response to acute aerobic exercise in obese individuals. Nutr Metab Cardiovasc Dis 25:839–845

    CAS  PubMed  Google Scholar 

  • So WY, Leung PS (2016) Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus. Med Res Rev 36:672–704

    CAS  PubMed  Google Scholar 

  • Solomon TP, Carter S, Haus JM, Karstoft K, von Holstein-Rathlou S, Nielsen MS, Gillum MP (2022) Plasma FGF21 concentrations are regulated by glucose independently of insulin and GLP-1 in lean, healthy humans. PeerJ 10:e12755

    PubMed  PubMed Central  Google Scholar 

  • Sun H, Sherrier M, Li H (2021) Skeletal muscle and bone-emerging targets of fibroblast growth factor-21. Front Physiol. https://doi.org/10.3389/fphys.2021.625287269

    Article  PubMed  PubMed Central  Google Scholar 

  • Targher G, Corey KE, Byrne CD, Roden M (2021) The complex link between NAFLD and type 2 diabetes mellitus—mechanisms and treatments. Nat Rev Gastroenterol Hepatol 18:599–612

    PubMed  Google Scholar 

  • Uebanso T, Taketani Y, Yamamoto H, Amo K, Tanaka S, Arai H, Takei Y, Masuda M, Yamanaka-Okumura H, Takeda E (2012) Liver X receptor negatively regulates fibroblast growth factor 21 in the fatty liver induced by cholesterol-enriched diet. J Nutr Biochem 23:785–790

    CAS  PubMed  Google Scholar 

  • Valiño-Rivas L, Cuarental L, Ceballos MI, Pintor-Chocano A, Perez-Gomez MV, Sanz AB, Ortiz A, Sanchez-Niño MD (2022) Growth differentiation factor-15 preserves Klotho expression in acute kidney injury and kidney fibrosis. Kidney Int 101:1200–1215

    PubMed  Google Scholar 

  • Wang C, Guo F (2012) Effects of activating transcription factor 4 deficiency on carbohydrate and lipid metabolism in mammals. IUBMB Life 64:226–230

    CAS  PubMed  Google Scholar 

  • Watanabe H, Miyahisa M, Chikamatsu M, Nishida K, Minayoshi Y, Takano M, Ichimizu S, Kobashigawa Y, Morioka H, Maeda H (2020) Development of a long acting FGF21 analogue-albumin fusion protein and its anti-diabetic effects. J Control Release 324:522–531

    CAS  PubMed  Google Scholar 

  • Woo Y, Xu A, Wang Y, Lam KS (2013) Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin Endocrinol (oxf) 78:489–496

    CAS  PubMed  Google Scholar 

  • Xiao Y, Xu A, Law LS, Chen C, Li H, Li X, Yang L, Liu S, Zhou Z, Lam KS (2012) Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes. J Clin Endocrinol Metab 97:E54–E58

    CAS  PubMed  Google Scholar 

  • Xue J, Wang L, Sun Z, Xing C (2019) Basic research in diabetic nephropathy health care: a study of the renoprotective mechanism of metformin. J Med Syst 43:1–13

    Google Scholar 

  • Ye X, Qi J, Yu D, Wu Y, Zhu S, Li S, Wu Q, Ren G, Li D (2017) Pharmacological efficacy of FGF21 analogue, liraglutide and insulin glargine in treatment of type 2 diabetes. J Diabet Complicat 31:726–734

    Google Scholar 

  • Yu J, Yu B, Jiang H, Chen D (2012) Conjugated linoleic acid induces hepatic expression of fibroblast growth factor 21 through PPAR-α. Br J Nutr 107:461–465

    CAS  PubMed  Google Scholar 

  • Yu Y, He J, Li S, Song L, Guo X, Yao W, Zou D, Gao X, Liu Y, Bai F (2016) Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway. Int Immunopharmacol 38:144–152

    CAS  PubMed  Google Scholar 

  • Zhang L, Liu T (2018) Clinical implication of alterations in serum Klotho levels in patients with type 2 diabetes mellitus and its associated complications. J Diabet Complicat 32:922–930

    Google Scholar 

  • Zhang J, Weng W, Wang K, Lu X, Cai L, Sun J (2018a) The role of FGF21 in type 1 diabetes and its complications. Int J Biol Sci 14:1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Sun W, Qian J, Tang Y (2018b) Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid β-oxidation and ketogenesis via activating XBP1 signaling in liver. Redox Biol 16:87–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Ma Y, Liu J, Deng Y, Zhou B, Wen Y, Li M, Wen D, Ying Y, Luo S (2021) Metformin alleviates hepatic steatosis and insulin resistance in a mouse model of high-fat diet-induced nonalcoholic fatty liver disease by promoting transcription factor EB-dependent autophagy. Front Pharmacol 12:689111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Xia L, Wang J (2007) Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Disposition 35:1956–1962

    CAS  Google Scholar 

  • Zibar K, Blaslov K, Bulum T, Ćuća JK, Smirčić-Duvnjak L (2015) Basal and postprandial change in serum fibroblast growth factor-21 concentration in type 1 diabetic mellitus and in healthy controls. Endocrine 48:848–855

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

HMAK and AIA conceptualized the manuscript, wrote, edited, and reviewed the main text and approved the final edition of the manuscript. HMS and GESB prepared the figures, wrote, corrected, amended, and approved the final edition of the manuscript.

Corresponding authors

Correspondence to Hebatallah M. Saad or Gaber El-Saber Batiha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-kuraishy, H.M., Al-Gareeb, A.I., Saad, H.M. et al. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM). Inflammopharmacol 31, 1751–1760 (2023). https://doi.org/10.1007/s10787-023-01255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01255-4

Keywords

Navigation