Skip to main content

Advertisement

Log in

New insights on mode of action of vasorelaxant activity of simvastatin

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Simvastatin is a semisynthetic inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and is used extensively to treat atherosclerotic cardiovascular disease. Apart from the lipid-lowering effect, simvastatin has been documented to offer impressive vasorelaxant activity. However, the mechanism associated with this vasorelaxant activity has yet not been substantially explored. Thus, the present study has aimed to elucidate the mechanism(s) associated with simvastatin-induced vasorelaxation using an established rat aortic ring model. The results from the study depicted that simvastatin caused significant relaxation in aortic rings pre-contracted with phenylephrine and potassium chloride (KCl). The vasorelaxant effect of simvastatin was attenuated by methylene blue (sGC-dependent cyclic guanosine monophosphate (cGMP) inhibitor), NG-nitro-L-arginine methyl ester (L-NAME; NO synthase inhibitor), 4-aminopyridine (Kv blocker), glibenclamide (KATP blocker), and barium chloride (Kir blocker). In addition, the vasorelaxant effect of simvastatin was slightly reduced by PD123319 (angiotensin II type 2 receptor (AT2R) antagonist). However, indomethacin (COX inhibitor), 1H-[1,2,4]Ox adiazolol [4,3-α]quinoxalin-1-one (ODQ; selective soluble guanylate cyclase (sGC) inhibitor), losartan (angiotensin II type 1 receptor (AT1R) antagonist), atropine (muscarinic receptor blocker), and tetraethyl ammonium (TEA; KCa blocker) did not affect the vasorelaxant effect of simvastatin. Furthermore, simvastatin was found to attenuate the release of calcium (Ca2+) from intracellular stores in the presence of ruthenium red (ryanodine receptor, RyR inhibitor) and extracellular stores via nifedipine (voltage-operated Ca2+ channels, VOCC blocker) and SK&F96365 (receptor-operated Ca2+ channel, ROCC blocker). Thus, it can be concluded that the vasorelaxant effect of simvastatin involves NO/cGMP pathways, AT2R receptors, Ca2+ channels, and K+ channels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

Download references

Acknowledgements

The authors are thankful to the late Prof. Aditya Shastri, Vice-Chancellor, Banasthali Vidyapith, Banasthali, Rajasthan, India, for providing all the necessary facilities in the successful accomplishment of the present work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KV: investigation and conceptualization, and writing—original draft. RS: formal analysis and visualization. JD: review and editing. SP: supervision. SS: conceptualization, methodology, and supervision.

Corresponding author

Correspondence to Swapnil Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, K., Shukla, R., Dwivedi, J. et al. New insights on mode of action of vasorelaxant activity of simvastatin. Inflammopharmacol 31, 1279–1288 (2023). https://doi.org/10.1007/s10787-023-01219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01219-8

Keywords

Navigation