Skip to main content
Log in

A review on curcumin colon-targeted oral drug delivery systems for the treatment of inflammatory bowel disease

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Synthetic drugs and monoclonal antibodies are the typical treatments to combat inflammatory bowel disease (IBD). However, side effects are present when these treatments are used, and their continued application could be restricted by the high relapse rate of the disease. One potential alternative to these treatments is the use of plant-derived products. The use curcumin is one such treatment option that has seen an increase in usage in treating IBD. Curcumin is derived from a rhizome of turmeric (Curcuma longa), and the results of studies on the use of curcumin to treat IBD are promising. These studies suggest that curcumin interacts with cellular targets such as NF-κB, JAKs/STATs, MAPKs, TNF-α, IL-6, PPAR, and TRPV1 and may reduce the progression of IBD. Potentially, curcumin can be used as a therapeutic agent for patients with IBD when it reduces the incidence of clinical relapse. This review discusses the strategies utilized in designing and developing an oral colonic delivery dosage form of curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

There is no raw data associated with this review.

References

  • Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made Jack-of-all-trades? J Cell Physiol 233(2):830–848

    Article  CAS  PubMed  Google Scholar 

  • Agagunduz D, Sahin TO, Yilmaz B, Ekenci KD, Duyar Ozer S, Capasso R (2022) Cruciferous vegetables and their bioactive metabolites: from prevention to novel therapies of colorectal cancer. Evid Based Complement Alternat Med 2022:1534083. https://doi.org/10.1155/2022/1534083

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahir AA, Mali SS, Hajare AA, Bhagwat DA, Patrekar PV (2015) Pelletization technology: methods and applications-a review. Res J Pharm Technol 8(2):131

    Article  Google Scholar 

  • Akkol EK, Karpuz B, Sobarzo-Sánchez E, Khan H (2020) A phytopharmacological overview of medicinal plants used for prophylactic and treatment of colitis. Food Chem Toxicol 144:111628

    Article  CAS  PubMed  Google Scholar 

  • Alidadi M, Jamialahmadi T, Cicero AFG, Bianconi V, Pirro M, Banach M et al (2020) The potential role of plant-derived natural products in improving arterial stiffness: a review of dietary intervention studies. Trends Food Sci Technol 99:426–440. https://doi.org/10.1016/j.tifs.2020.03.026

    Article  CAS  Google Scholar 

  • Almeida EA, Bellettini IC, Garcia FP, Farinácio MT, Nakamura CV, Rubira AF et al (2017) Curcumin-loaded dual pH-and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery. Carbohyd Polym 171:259–266

    Article  CAS  Google Scholar 

  • Amidon S, Brown JE, Dave VS (2015) Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech 16(4):731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora A, Kumar S, Kumar S, Kumar R, Prasad AK (2022) Chemical features and therapeutic applications of curcumin (a review) (review). Russ J Gen Chem 92(9):1785–1805. https://doi.org/10.1134/S1070363222090201

    Article  CAS  Google Scholar 

  • Bavarsad K, Barreto GE, Hadjzadeh MAR, Sahebkar A (2019) Protective effects of curcumin against ischemia-reperfusion injury in the nervous system (review). Mol Neurobiol 56(2):1391–1404. https://doi.org/10.1007/s12035-018-1169-7

    Article  CAS  PubMed  Google Scholar 

  • Blanco-García E, Otero-Espinar F, Blanco-Méndez J, Leiro-Vidal J, Luzardo-Álvarez A (2017) Development and characterization of anti-inflammatory activity of curcumin-loaded biodegradable microspheres with potential use in intestinal inflammatory disorders. Int J Pharm 518(1–2):86–104

    Article  PubMed  Google Scholar 

  • Butte K, Momin M, Deshmukh H (2014) Optimisation and in vivo evaluation of pectin based drug delivery system containing curcumin for colon. Int J Biomat 2014:924278

    Article  Google Scholar 

  • Caban M, Lewandowska U (2022) Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases. J Funct Foods 95:105181

    Article  CAS  Google Scholar 

  • Chaudhry SR, Liman MNP, Peterson DC (2021) Anatomy, abdomen and pelvis, stomach. StatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  • Chen Q, Si X, Ma L, Ma P, Hou M, Bai S et al (2017) Oral delivery of curcumin via porous polymeric nanoparticles for effective ulcerative colitis therapy. J Mater Chem B 5(29):5881–5891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Gou S, Huang Y, Zhou X, Li Q, Han MK et al (2018) Facile fabrication of bowl-shaped microparticles for oral curcumin delivery to ulcerative colitis tissue. Colloids Surf, B 169:92–98

    Article  CAS  Google Scholar 

  • Chen Y, Yao F, Ming K, Shi J, Zeng L, Wang D et al (2019) Assessment of the effect of baicalin on duck virus hepatitis. Curr Mol Med 19(5):376–386

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhai Z, Long H, Yang G, Deng B, Deng J (2020) Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides 123:170177

    Article  CAS  PubMed  Google Scholar 

  • Cong Y, Wang L, Konrad A, Schoeb T, Elson CO (2009) Curcumin induces the tolerogenic dendritic cell that promotes differentiation of intestine-protective regulatory T cells. Eur J Immunol 39(11):3134–3146

    Article  CAS  PubMed  Google Scholar 

  • Dei Cas M, Ghidoni R (2019) Dietary curcumin: correlation between bioavailability and health potential. Nutrients 11(9):2147

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng X, Liu Y, Qin J, Ye T, Wang S (2020) A novel pellets/thermosensitive hydrogel depot with low burst release for long-term continuous drug release: preparation, characterization, in vitro and in vivo studies. J Drug Deliv Sci Technol 60:102050

    Article  CAS  Google Scholar 

  • Desai N, Momin M (2020) Colon targeted bioadhesive pellets of curcumin and cyclosporine for improved management of inflammatory bowel disease. Drug Deliv Transl Res 10(5):1288–1301

    Article  CAS  PubMed  Google Scholar 

  • Dworzanski T, Celinski K, Korolczuk A, Slomka M, Radej S, Czechowska G et al (2010) Influence of the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, rosiglitazone and antagonist, biphenol-A-diglicydyl ether (BADGE) on the course of inflammation in the experimental model of colitis in rats. J Physiol Pharmacol 61(6):683

    CAS  PubMed  Google Scholar 

  • Enayati A, Banach M, Jamialahmadi T, Sahebkar A (2022) Protective role of nutraceuticals against myocarditis. Biomed Pharm 146:112242. https://doi.org/10.1016/j.biopha.2021.112242

    Article  CAS  Google Scholar 

  • Epstein J, Docena G, MacDonald TT, Sanderson IR (2010a) Curcumin suppresses p38 mitogen-activated protein kinase activation, reduces IL-1β and matrix metalloproteinase-3 and enhances IL-10 in the mucosa of children and adults with inflammatory bowel disease. Br J Nutr 103(6):824–832

    Article  CAS  PubMed  Google Scholar 

  • Epstein J, Sanderson IR, MacDonald TT (2010b) Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr 103(11):1545–1557

    Article  CAS  PubMed  Google Scholar 

  • Fakhoury M, Negrulj R, Mooranian A, Al-Salami H (2014) Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res 7:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS (2020) Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials 10(4):787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farzaei HM, Rahimi R, Abdollahi M (2015) The role of dietary polyphenols in the management of inflammatory bowel disease. Curr Pharm Biotechnol 16(3):196–210

    Article  CAS  PubMed  Google Scholar 

  • Fernandez J, Silvan B, Entrialgo-Cadierno R, Villar CJ, Capasso R, Uranga JA et al (2021) Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomed Pharm 143:112241. https://doi.org/10.1016/j.biopha.2021.112241

    Article  CAS  Google Scholar 

  • Fiorucci S, Cipriani S, Mencarelli A, Renga B, Distrutti E, Baldelli F (2010) Counter-regulatory role of bile acid activated receptors in immunity and inflammation. Curr Mol Med 10(6):579–595

    CAS  PubMed  Google Scholar 

  • Fu X, Gong L-F, Wu Y-F, Lin Z, Jiang B-J, Wu L et al (2019) Urolithin A targets the PI3K/Akt/NF-κB pathways and prevents IL-1β-induced inflammatory response in human osteoarthritis: in vitro and in vivo studies. Food Funct 10(9):6135–6146

    Article  CAS  PubMed  Google Scholar 

  • Ganjali S, Blesso CN, Banach M, Pirro M, Majeed M, Sahebkar A (2017) Effects of curcumin on HDL functionality (review). Pharmacol Res 119:208–218. https://doi.org/10.1016/j.phrs.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  • Gelberg HB (2014) Comparative anatomy, physiology, and mechanisms of disease production of the esophagus, stomach, and small intestine. Toxicol Pathol 42(1):54–66

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi F, Bagheri H, Barreto GE, Read MI, Sahebkar A (2019) Effects of curcumin on microglial cells (review). Neurotox Res 36(1):12–26. https://doi.org/10.1007/s12640-019-00030-0

    Article  CAS  PubMed  Google Scholar 

  • Ghasemian M, Owlia S, Owlia MB (2016) Review of anti-inflammatory herbal medicines. Adv Pharmacol Sci 2016:9130979

    PubMed  PubMed Central  Google Scholar 

  • Guan Q (2019) A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res 2019:1–16

    Article  Google Scholar 

  • Hales D, Tefas LR, Tomuță I, Moldovan C, Gulei D, Munteanu R et al (2020) Development of a curcumin-loaded polymeric microparticulate oral drug delivery system for colon targeting by quality-by-design approach. Pharmaceutics 12(11):1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar A (2020) Curcumin: an inflammasome silencer (review). Pharmacol Res. https://doi.org/10.1016/j.phrs.2020.104921

    Article  Google Scholar 

  • Heidari Z, Daei M, Boozari M, Jamialahmadi T, Sahebkar A (2022) Curcumin supplementation in pediatric patients: a systematic review of current clinical evidence (review). Phytother Res 36(4):1442–1458. https://doi.org/10.1002/ptr.7350

    Article  CAS  PubMed  Google Scholar 

  • Hosseini A, Penson PE, Cicero AFG, Golledge J, Al-Rasadi K, Jamialahmadi T et al (2021) Potential benefits of phytochemicals for abdominal aortic aneurysm. Curr Med Chem 28(41):8595–8607. https://doi.org/10.2174/0929867328666210614113116

    Article  CAS  PubMed  Google Scholar 

  • Hua S (2020) Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol 11:524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igam Y (2019) Gastrointestinal tract 4: anatomy and role of the jejunum and ileum. Nurs times 115(9):43–46

    Google Scholar 

  • Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversion from Ferula diversivittata in vitro and in vivo (Article). Phytomedicine 17(3–4):269–273. https://doi.org/10.1016/j.phymed.2009.05.020

    Article  CAS  PubMed  Google Scholar 

  • Isaacs J, Hilkens C (2019) Tolerogenic antigen-presenting cells-modulating unwanted immune response at their core. Frontiers Media SA

    Book  Google Scholar 

  • Jain KK (2020) An overview of drug delivery systems. drug delivery systems. Springer New York, New York, pp 1–54

    Chapter  Google Scholar 

  • Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, Sève P (2019) JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev 18(11):102390

    Article  CAS  PubMed  Google Scholar 

  • Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA et al (1999) Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. J Immunol 163(6):3474–3483

    Article  CAS  PubMed  Google Scholar 

  • Ju JK, Cho Y-N, Park K-J, Kwak HD, Jin H-M, Park S-Y et al (2020) Activation, deficiency, and reduced IFN-γ production of mucosal-associated invariant T cells in patients with inflammatory bowel disease. J Innate Immun 12(5):422–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaffash E, Saremnejad F, Abbaspour M, Mohajeri SA, Garekani HA, Jafarian AH et al (2019) Statistical optimization of alginate-based oral dosage form of 5-aminosalicylic acid aimed to colonic delivery: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 52:177–188

    Article  CAS  Google Scholar 

  • Karrout Y, Dubuquoy L, Piveteau C, Siepmann F, Moussa E, Wils D et al (2015) In vivo efficacy of microbiota-sensitive coatings for colon targeting: a promising tool for IBD therapy. J Control Release 197:121–130

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S et al (2019) Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev 18(7):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Kim GH (2020) An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Theranostics 10(6):2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotla NG, Singh R, Baby BV, Rasala S, Rasool J, Hynes SO et al (2022) Inflammation-specific targeted carriers for local drug delivery to inflammatory bowel disease. Biomaterials 281:121364

    Article  CAS  PubMed  Google Scholar 

  • Koziolek M, Grimm M, Becker D, Iordanov V, Zou H, Shimizu J et al (2015) Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap® system. J Pharm Sci 104(9):2855–2863

    Article  CAS  PubMed  Google Scholar 

  • Kshirsagar S, Pandit AP (2018) Curcumin pellets of carboxymethylated tamarind seed polysaccharide for the treatment of inflammatory bowel disease. Drug Deliv Lett 8(1):29–40

    CAS  Google Scholar 

  • Kumar M, Kaushik D (2018) An overview on various approaches and recent patents on gastroretentive drug delivery systems. Recent Pat Drug Deliv Formul 12(2):84–92

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Mishra B (2008) Colon targeted drug delivery systems-an overview. Curr Drug Deliv 5(3):186–198

    Article  CAS  PubMed  Google Scholar 

  • Kupeli Akkol E, Tatli Cankaya I, Seker Karatoprak G, Carpar E, Sobarzo-Sanchez E, Capasso R (2021) Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front Pharmacol 12:669638. https://doi.org/10.3389/fphar.2021.669638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larmonier C, Midura-Kiela M, Ramalingam R, Laubitz D, Janikashvili N, Larmonier N et al (2011) Modulation of neutrophil motility by curcumin: implications for inflammatory bowel disease. Inflamm Bowel Dis 17(2):503–515

    Article  CAS  PubMed  Google Scholar 

  • Lim W, Lee Y, Lee J-E (2019) Finding the volume and surface area in the gut. Aust Math Educ J 1(2):11–15

    Google Scholar 

  • Lively S, Schlichter LC (2018) Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+ TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci 12:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu P-D, Zhao Y-H (2020) Targeting NF-κB pathway for treating ulcerative colitis: comprehensive regulatory characteristics of Chinese medicines. Chin Med 15(1):1–25

    Article  Google Scholar 

  • Luo R, Lin M, Zhang C, Shi J, Zhang S, Chen Q et al (2020) Genipin-crosslinked human serum albumin coating using a tannic acid layer for enhanced oral administration of curcumin in the treatment of ulcerative colitis. Food Chem 330:127241

    Article  CAS  PubMed  Google Scholar 

  • Maradana MR, Thomas R, O’Sullivan BJ (2013) Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 57(9):1550–1556

    Article  CAS  PubMed  Google Scholar 

  • Midura-Kiela MT, Radhakrishnan VM, Larmonier CB, Laubitz D, Ghishan FK, Kiela PR (2012) Curcumin inhibits interferon-γ signaling in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 302(1):G85–G96

    Article  CAS  PubMed  Google Scholar 

  • Mohammed ES, El-Beih NM, El-Hussieny EA, El-Ahwany E, Hassan M, Zoheiry M (2021) Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model (article). Arch Med Sci 17(1):218–227. https://doi.org/10.5114/aoms.2020.93739

    Article  CAS  PubMed  Google Scholar 

  • Momtazi-Borojeni AA, Haftcheshmeh SM, Esmaeili SA, Johnston TP, Abdollahi E, Sahebkar A (2018) Curcumin: a natural modulator of immune cells in systemic lupus erythematosus (review). Autoimmun Rev 17(2):125–135. https://doi.org/10.1016/j.autrev.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Canfora EE, Blaak EE (2018) Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients 10(3):275

    Article  PubMed  PubMed Central  Google Scholar 

  • Murakami T (2017) Absorption sites of orally administered drugs in the small intestine. Expert Opin Drug Discov 12(12):1219–1232

    Article  CAS  PubMed  Google Scholar 

  • Nayak AK, Malakar J, Sen KK (2010) Gastroretentive drug delivery technologies: current approaches and future potential. J Pharm Educ Res 1(2):1

    CAS  Google Scholar 

  • Nguyen T-HT, Trinh N-T, Tran HN, Tran HT, Le PQ, Ngo D-N et al (2021) Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. J Control Release 331:515–524

    Article  CAS  PubMed  Google Scholar 

  • Nief RA, Sulaiman HT, Jabir SA (2018) Pulsatile drug delivery system-a review article. J Pharm Res 12(5):764–770

    CAS  Google Scholar 

  • Nigam Y, Knight J, Williams N (2019) Gastrointestinal tract 5: the anatomy and functions of the large intestine. Nurs times 115(10):50–53

    Google Scholar 

  • Ohno M, Nishida A, Sugitani Y, Nishino K, Inatomi O, Sugimoto M et al (2017) Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS ONE 12(10):e0185999

    Article  PubMed  PubMed Central  Google Scholar 

  • Oshi MA, Lee J, Naeem M, Hasan N, Kim J, Kim HJ et al (2020) Curcumin nanocrystal/pH-responsive polyelectrolyte multilayer core–shell nanoparticles for inflammation-targeted alleviation of ulcerative colitis. Biomacromol 21(9):3571–3581

    Article  CAS  Google Scholar 

  • Panahi Y, Khalili N, Sahebi E, Namazi S, Reiner Ž, Majeed M et al (2017) Curcuminoids modify lipid profile in type 2 diabetes mellitus: a randomized controlled trial (Article). Complement Ther Med 33:1–5. https://doi.org/10.1016/j.ctim.2017.05.006

    Article  PubMed  Google Scholar 

  • Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A (2018) Therapeutic potential of curcumin in diabetic complications (Review). Pharmacol Res 136:181–193. https://doi.org/10.1016/j.phrs.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  • Patel Parul K, Satwara Rohan S, Pandya S (2012) Bacteria aided biopolymers as carriers for colon specific drug delivery system: a review. Int J Pharm Tech Res 4:1192–1214

    Google Scholar 

  • Patil A, Pawar P, Gharge V, Doltade U, Doijad R (2018) Mesalamine-loaded mucoadhesive microsphere for colon drug delivery system: effect of process variables and in vitro characterization. Int J Pharm Investig 8(2):74–82

    Article  CAS  Google Scholar 

  • Patil VS, Burdette BC, Hilt JZ, Kalika DS, Dziubla TD (2022) Poly (curcumin β-amino ester)-based tablet formulation for a sustained release of curcumin. Gels 8(6):337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekow J, Bissonnette M (2014) Is RXRα crucially involved in intestinal inflammation? Springer, pp 702–703

    Google Scholar 

  • Rahimi K, Ahmadi A, Hassanzadeh K, Soleimani Z, Sathyapalan T, Mohammadi A et al (2019) Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun Rev 18(7):738–748

    Article  CAS  PubMed  Google Scholar 

  • Razavi BM, Ghasemzadeh Rahbardar M, Hosseinzadeh H (2021) A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytother Res 35(12):6489–6513

    Article  CAS  PubMed  Google Scholar 

  • Roda G, Chien Ng S, Kotze PG, Argollo M, Panaccione R, Spinelli A et al (2020) Crohn’s Disease Nature Reviews Disease Primers 6(1):1–19

    Article  Google Scholar 

  • Sahebkar A, Henrotin Y (2016) Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials (review). Pain Med (united States) 17(6):1192–1202. https://doi.org/10.1093/pm/pnv024

    Article  Google Scholar 

  • Salah N, Dubuquoy L, Carpentier R, Betbeder D (2022) Starch nanoparticles improve curcumin-induced production of anti-inflammatory cytokines in intestinal epithelial cells. Int J Pharm X 4:100114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sardo HS, Saremnejad F, Bagheri S, Akhgari A, Garekani HA, Sadeghi F (2019) A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm 558:367–379

    Article  Google Scholar 

  • Sardou HS, Akhgari A, Garekani HA, Sadeghi F (2019) Screening of different polysaccharides in a composite film based on Eudragit RS for subsequent use as a coating for delivery of 5-ASA to colon. Int J Pharm 568:118527

    Article  Google Scholar 

  • Sardou HS, Akhgari A, Mohammadpour AH, Kamali H, Jafarian AH, Garekani HA et al (2021) Application of inulin/Eudragit RS in 5-ASA pellet coating with tuned, sustained-release feature in an animal model of ulcerative colitis. Int J Pharm 597:120347

    Article  Google Scholar 

  • Sardou HS, Akhgari A, Mohammadpour AH, Namdar AB, Kamali H, Jafarian AH et al (2022) Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis. Eur J Pharm Sci 168:106072

    Article  Google Scholar 

  • Sareen R, Jain N, Rajkumari A, Dhar K (2016) pH triggered delivery of curcumin from Eudragit-coated chitosan microspheres for inflammatory bowel disease: characterization and pharmacodynamic evaluation. Drug Delivery 23(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan NK, Sreekala SR, Jacob J, Nambisan B (2014) In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea. BioMed Res Int 2014:1–8

    Article  Google Scholar 

  • Sensoy I (2021) A review on the food digestion in the digestive tract and the used in vitro models. Curr Res Food Sci 4:308–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Sha K, Ma Q, Veroniaina H, Qi X, Qin J, Wu Z (2021) Formulation optimization of solid self-microemulsifying pellets for enhanced oral bioavailability of curcumin. Pharm Dev Technol 26(5):549–558

    Article  CAS  PubMed  Google Scholar 

  • Shafiee S, Ahangar HA, Saffar A (2019) Taguchi method optimization for synthesis of Fe3O4@ chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohyd Polym 222:114982

    Article  CAS  Google Scholar 

  • Soendergaard C, Bergenheim FH, Bjerrum JT, Nielsen OH (2018) Targeting JAK-STAT signal transduction in IBD. Pharmacol Ther 192:100–111

    Article  CAS  PubMed  Google Scholar 

  • Soltani S, Boozari M, Cicero AFG, Jamialahmadi T, Sahebkar A (2021) Effects of phytochemicals on macrophage cholesterol efflux capacity: impact on atherosclerosis. Phytother Res 35(6):2854–2878. https://doi.org/10.1002/ptr.6991

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Xu W, Li D, Zhou H, Qu F, Cao S et al (2020) p38 mitogen-activated protein kinases (MAPKs) are involved in intestinal immune response to bacterial muramyl dipeptide challenge in Ctenopharyngodon idella. Mol Immunol 118:79–90

    Article  CAS  PubMed  Google Scholar 

  • Sureshkumar R, Munikumar M, Ganesh G, Jawahar N, Nagasamyvenkatesh D, Senthil V et al (2009) Formulation and evaluation of pectin-hydroxypropyl methylcellulose coated curcumin pellets for colon delivery. Asian J Pharm 3(2):138

    Article  Google Scholar 

  • Suzuki A, Hanada T, Mitsuyama K, Yoshida T, Kamizono S, Hoshino T et al (2001) CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 193(4):471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varanko A, Saha S, Chilkoti A (2020) Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 156:133–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchi Brumatti L, Marcuzzi A, Tricarico PM, Zanin V, Girardelli M, Bianco AM (2014) Curcumin and inflammatory bowel disease: potential and limits of innovative treatments. Molecules 19(12):21127–21153

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinarov Z, Abdallah M, Agundez JA, Allegaert K, Basit AW, Braeckmans M et al (2021) Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: an UNGAP review. Eur J Pharm Sci 162:105812

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan P, Muralidaran Y, Ragavan G (2017) Challenges in oral drug delivery: a nano-based strategy to overcome. Nanostructures for oral medicine. Elsevier, pp 173–201

    Chapter  Google Scholar 

  • Voskuil MD, Bangma A, Weersma RK, Festen EAM (2019) Predicting (side) effects for patients with inflammatory bowel disease: The promise of pharmacogenetics. World J Gastroenterol 25(21):2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walrath T, Malizia RA, Zhu X, Sharp SP, D’Souza SS, Lopez-Soler R et al (2020) IFN-γ and IL-17A regulate intestinal crypt production of CXCL10 in the healthy and inflamed colon. Am J Physiol Gastrointest Liver Physiol 318:479–489

    Article  Google Scholar 

  • Wang J, Zhu G, Sun C, Xiong K, Yao T, Su Y et al (2020) TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signalling pathway. Microb Cell Fact 19(1):1–17

    Article  CAS  Google Scholar 

  • Xiao B, Si X, Zhang M, Merlin D (2015) Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy. Colloids Surf, B 135:379–385

    Article  CAS  Google Scholar 

  • Xu C, Chen S, Chen C, Ming Y, Du J, Mu J et al (2022) Colon-targeted oral nanoparticles based on ROS-scavenging hydroxyethyl starch-curcumin conjugates for efficient inflammatory bowel disease therapy. Int J Pharm 623:121884

    Article  CAS  PubMed  Google Scholar 

  • Yang J-Y, Zhong X, Yum H-W, Lee H-J, Kundu JK, Na H-K et al (2013) Curcumin inhibits STAT3 signaling in the colon of dextran sulfate sodium-treated mice. J Cancer Prev 18(2):186

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang M, Wang J, Yang C, Han H, Rong W, Zhang G (2017) Oral administration of curcumin attenuates visceral hyperalgesia through inhibiting phosphorylation of TRPV1 in rat model of ulcerative colitis. Mol Pain 13:1744806917726416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Huang Y, Wu Y, Wu Y, Huang G, Xiong J et al (2022) Curcumin chitosan microsphere improve ulcerative colitis inflammatory response by regulating miR-224–3p/TLR4 axis. Food Sci Technol. https://doi.org/10.1590/fst.65721

    Article  Google Scholar 

  • Zahedipour F, Hosseini SA, Henney NC, Barreto GE, Sahebkar A (2022) Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 17(8):1675–1684. https://doi.org/10.4103/1673-5374.332128

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Cao F, Ding B, Li Q, Xi Y, Zhai G (2011) Eudragit® S100 coated calcium pectinate microspheres of curcumin for colon targeting. J Microencapsul 28(7):659–667

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wu P, Jeantet R, Dupont D, Delaplace G, Chen XD et al (2020) How motility can enhance mass transfer and absorption in the duodenum: taking the structure of the villi into account. Chem Eng Sci 213:115406

    Article  CAS  Google Scholar 

  • Zhou X, Liu Y, Huang Y, Ma Y, Lv J, Xiao B (2019) Mucus-penetrating polymeric nanoparticles for oral delivery of curcumin to inflamed colon tissue. J Drug Deliv Sci Technol 52:157–164

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardou, H.S., Vosough, P.R., Abbaspour, M. et al. A review on curcumin colon-targeted oral drug delivery systems for the treatment of inflammatory bowel disease. Inflammopharmacol 31, 1095–1105 (2023). https://doi.org/10.1007/s10787-023-01140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01140-0

Keywords

Navigation