Skip to main content

Advertisement

Log in

MicroRNAs-mediated regulation pathways in rheumatic diseases

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are two common rheumatic disorders marked by persistent inflammatory joint disease. Patients with RA have osteodestructive symptoms, but those with AS have osteoproliferative manifestations. Ligaments, joints, tendons, bones, and muscles are all affected by rheumatic disorders. In recent years, many epigenetic factors contributing to the pathogenesis of rheumatoid disorders have been studied. MicroRNAs (miRNAs) are small, non-coding RNA molecules implicated as potential therapeutic targets or biomarkers in rheumatic diseases. MiRNAs play a critical role in the modulation of bone homeostasis and joint remodeling by controlling fibroblast-like synoviocytes (FLSs), chondrocytes, and osteocytes. Several miRNAs have been shown to be dysregulated in rheumatic diseases, including miR-10a, 16, 17, 18a, 19, 20a, 21, 27a, 29a, 34a, 103a, 125b, 132, 137, 143, 145, 146a, 155, 192, 203, 221, 222, 301a, 346, and 548a.The major molecular pathways governed by miRNAs in these cells are Wnt, bone-morphogenic protein (BMP), nuclear factor (NF)-κB, receptor activator of NF-κB (RANK)—RANK ligand (RANKL), and macrophage colony-stimulating factor (M-CSF) receptor pathway. This review aimed to provide an overview of the most important signaling pathways controlled by miRNAs in rheumatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

AS:

Ankylosing spondylitis

ATF4:

Activating transcription factor 4

BMPR2:

BMP receptor type II

BMP:

Bone-morphogenic protein

CLCN7:

Chloride channel 7

cIAP2:

Cellular inhibitor of apoptosis protein 2

DNMT1, DKK2:

Dickkopf Wnt signaling pathway inhibitor 2; DNA methyltransferase 1

FSTL1, EMT:

Epithelial to mesenchymal transition; follistatin-like 1

FLS:

Fibroblast-like synoviocytes

FOXC1:

Forkhead box C1

FZD:

Frizzled class receptor

GSK3β:

Glycogen synthase kinase 3β

IRAK1:

IL-1 receptor-associated kinase 1

IFN:

Interferon

JNK:

C-Jun N-terminal kinase

LPS:

Lipopolysaccharides

LRP:

Lipoprotein-related receptor

M-CSF:

Macrophage colony-stimulating factor

MAPK:

Mitogen-activated protein kinases

MMP:

Matrix metalloproteases

MITF:

Microphthalmia-associated transcription factor

NFAT:

Nuclear factor of activated T

NFκB:

Nuclear factor-κB; Notch1, Notch homolog 1 translocation-associated

OA:

Osteoarthritis

OSCAR:

Osteoclast-associated receptor

OPG:

Osteoprotegerin

PTHrP:

Parathyroid hormone-related protein

PDCD4:

Programmed cell death 4

PKR:

Protein kinase double-stranded RNA-dependent

PI3K:

Phosphoinositide 3-kinase

RA:

Rheumatoid arthritis

Runx2:

Runt-related transcription factor 2

SOCS1:

Suppressor of cytokine signaling 1

SFRP2:

Secreted frizzled-related protein 2

TAB1:

TGF-β activated kinase 1 (MAP3K7) binding protein 1

TAK1:

TGF-β-activated kinase 1

TNFAIP3:

Tumor necrosis factor-3 alpha-induced protein

TRAF6:

TNF receptor-associated factor 6

TGF-β:

Transforming growth factor-β

TNF-α:

Tumor necrosis factor-α

TCF-1:

Transcription factors 1

WISP:

Wnt inducible signaling pathway proteins

References

  • Alevizos I, Illei GG (2010) MicroRNAs as biomarkers in rheumatic diseases. Nat Rev Rheumatol 6(7):391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babaie F, Hasankhani M, Mohammadi H, Safarzadeh E, Rezaiemanesh A, Salimi R et al (2018) The role of gut microbiota and IL-23/IL-17 pathway in ankylosing spondylitis immunopathogenesis: new insights and updates. Immunol Lett 196:52–62

    Article  CAS  PubMed  Google Scholar 

  • Bae Y, Yang T, Zeng H-C, Campeau PM, Chen Y, Bertin T et al (2012) miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21(13):2991–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baglio SR, Devescovi V, Granchi D, Baldini N (2013) MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 527(1):321–331

    Article  CAS  PubMed  Google Scholar 

  • Baraliakos X, Listing J, Rudwaleit M, Sieper J, Braun J (2008) The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther 10(5):1–7

    Article  Google Scholar 

  • Baulina NM, Kulakova OG, Favorova OO (2016) MicroRNAs: the role in autoimmune inflammation. Acta Naturae 8(1):21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumjohann D, Ansel KM (2013) MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 13(9):666–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter D, McInnes IB, Kurowska-Stolarska M (2012) Novel regulatory mechanisms in inflammatory arthritis: a role for microRNA. Immunol Cell Biol 90(3):288–292

    Article  CAS  PubMed  Google Scholar 

  • Bleil J, Sieper J, Maier R, Schlichting U, Hempfing A, Syrbe U et al (2015) Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS. Arthritis Res Ther 17(1):170

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruijnen ST, Verweij NJ, van Duivenvoorde LM, Bravenboer N, Baeten DL, van Denderen CJ et al (2018) Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography. Rheumatology 57(4):631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Han X, Qi X, Jin X, Li X (2018) miR-204-5p inhibits the occurrence and development of osteoarthritis by targeting Runx2. Int J Mol Med 42(5):2560–2568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Liu W, Sinha KM, Yasuda H, de Crombrugghe B (2013) Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix. PLoS ONE. https://doi.org/10.1371/journal.pone.0058104

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xian PF, Yang L, Wang SX (2016) MicroRNA-21 promotes proliferation of fibroblast-like synoviocytes through mediation of NF-kappaB nuclear translocation in a rat model of collagen-induced rheumatoid arthritis. Biomed Res Int 2016:9279078

    PubMed  PubMed Central  Google Scholar 

  • Chen C, Rong T, Li Z, Shen J (2019) Noncoding RNAs involved in the pathogenesis of ankylosing spondylitis. BioMed Res Int. https://doi.org/10.1155/2019/6920281

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen QY, Des Marais T, Costa M (2019) Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis 40(3):393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corr M (2014) Wnt signaling in ankylosing spondylitis. Clin Rheumatol 33(6):759–762

    Article  PubMed  Google Scholar 

  • Crotti TN, Flannery M, Walsh NC, Fleming JD, Goldring SR, McHugh KP (2006) NFATc1 regulation of the human β3 integrin promoter in osteoclast differentiation. Gene 372:92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeKoter RP, Walsh JC, Singh HPU (1998) 1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 17(15):4456–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Tocados JM, Herencia C, Martínez-Moreno JM, de Oca AM, Rodríguez-Ortiz ME, Vergara N et al (2017) Magnesium chloride promotes osteogenesis through notch signaling activation and expansion of mesenchymal stem cells. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Dixon MJ, Marazita ML, Beaty TH, Murray JC (2011) Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 12(3):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan L, Zhao H, Xiong Y, Tang X, Yang Y, Hu Z et al (2018) miR-16-2* interferes with WNT5A to regulate osteogenesis of mesenchymal stem cells. Cell Physiol Biochem 51(3):1087–1102

    Article  CAS  PubMed  Google Scholar 

  • Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI (2019) MicroRNAs in rheumatoid arthritis: from pathogenesis to clinical impact. Autoimmun Rev 18(11):102391

    Article  CAS  PubMed  Google Scholar 

  • Feldmann M (1996) Brennan, FM, and Maini RN rheumatoid arthritis. Cell 85:1277–1289

    Article  Google Scholar 

  • Fu H, Pan H, Zhao B, Dong B, Shao L, Fu G et al (2016) MicroRNA-100 inhibits bone morphogenetic protein-induced osteoblast differentiation by targeting Smad1. Eur Rev Med Pharmacol Sci 20(18):3911–3919

    PubMed  Google Scholar 

  • Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y et al (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129(3):617–631

    Article  CAS  PubMed  Google Scholar 

  • Gantier MP, Stunden HJ, McCoy CE, Behlke MA, Wang D, Kaparakis-Liaskos M et al (2012) A miR-19 regulon that controls NF-kappaB signaling. Nucleic Acids Res 40(16):8048–8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni L, Zhong X-S, Palmer DC, Ji Y, Hinrichs CS, Yu Z et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashizume M, Hayakawa N, Mihara M (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-α and IL-17. Rheumatology 47(11):1635–1640

    Article  CAS  PubMed  Google Scholar 

  • He L, Yuan J, Xu Q, Chen R, Chen L, Fang M (2016) miRNA-1283 regulates the PERK/ATF4 pathway in vascular injury by targeting ATF4. PLoS ONE 11(8):e0159171-e

    Article  Google Scholar 

  • Hellingman CA, Davidson EN, Koevoet W, Vitters EL, van den Berg WB, van Osch GJ et al (2011) Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification. Tissue Eng Part A 17(7–8):1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Hong W, Zhang P, Wang X, Tu J, Wei W (2018) The effects of microRNAs on key signalling pathways and epigenetic modification in fibroblast-like synoviocytes of rheumatoid arthritis. Mediators Inflamm. https://doi.org/10.1155/2018/9013124

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2):357–364

    Article  PubMed  Google Scholar 

  • Huang K, Zhang J-X, Han L, You Y-P, Jiang T, Pu P-Y et al (2010) MicroRNA roles in beta-catenin pathway. Mol Cancer. https://doi.org/10.1186/1476-4598-9-252

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang R-Y, Wu J-Q, Liu Z-H, Sun S-L (2019a) MicroRNAs in rheumatoid arthritis: what is the latest with regards to diagnostics? Expert Rev Mol Diagn 19(5):363–366

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Song G, Yin Z, Fu Z, Zhang L (2019b) Altered expression of microRNAs targeting Dkk-1 in peripheral blood mononuclear cells of patients with ankylosing spondylitis. Cent-Eur J Immunol 44(1):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang S, Park S-K, Lee HY, Kim SW, Lee JS, Choi EK et al (2014) miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett 588(17):2957–2963

    Article  CAS  PubMed  Google Scholar 

  • Ichiyama K, Gonzalez-Martin A, Kim B-S, Jin HY, Jin W, Xu W et al (2016) The microRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity 44(6):1284–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Icli B, Wara AK, Moslehi J, Sun X, Plovie E, Cahill M et al (2013) MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 113(11):1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Deng Z, Chen Y, Giannopoulou E, Xu R, Gong S et al (2018) Bone protection by inhibition of microRNA-182. Nat Commun 9(1):1–17

    Article  Google Scholar 

  • Ishii J, Kitazawa R, Mori K, McHugh KP, Morii E, Kondo T et al (2008) Lipopolysaccharide suppresses RANK gene expression in macrophages by down-regulating PU. 1 and MITF. J Cell Biochem 105(3):896–904

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Nozawa Y, Akao Y (2009) MicroRNA-141 and-200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem 284(29):19272–19279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh T, Takeda S, Akao Y (2010) MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J Biol Chem 285(36):27745–27752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamoto N, Kawakami A (2019) Recent findings regarding the effects of microRNAs on fibroblast-like synovial cells in rheumatoid arthritis. Immunol Med 42(4):156–161

    Article  PubMed  Google Scholar 

  • James JP, Riis LB, Malham M, Høgdall E, Langholz E, Nielsen BS (2020) MicroRNA biomarkers in IBD-differential diagnosis and prediction of colitis-associated cancer. Int J Mol Sci. https://doi.org/10.3390/ijms21217893

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia S, Zhai H, Zhao M (2014) MicroRNAs regulate immune system via multiple targets. Discov Med 18(100):237–247

    PubMed  Google Scholar 

  • Jung SM, Kim KW, Yang C-W, Park S-H, Ju JH (2014) Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res. https://doi.org/10.1155/2014/263625

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapinas K, Kessler CB, Delany AM (2009) miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 108(1):216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay M, Soltani BM, Aghdaei FH, Ansari H, Baharvand H (2019) Hsa-miR-335 regulates cardiac mesoderm and progenitor cell differentiation. Stem Cell Res Ther 10(1):1–13

    Article  CAS  Google Scholar 

  • Ke K, Sul O-J, Rajasekaran M, Choi H-S (2015) MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone 81:237–246

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Kim JH, Lee J, Jin H-M, Lee S-H, Fisher DE et al (2005) Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 280(42):35209–35216

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Park JS, Lee SJ, Jang J, Park JS, Back SH et al (2015) Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. J Control Release 216:140–148

    Article  CAS  PubMed  Google Scholar 

  • Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4(2):68–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Komori T (2009) Regulation of osteoblast differentiation by Runx2. Osteoimmunology. Springer, pp 43–49

    Google Scholar 

  • Komori T (2018) Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 149(4):313–323

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar M, Doody J, Massagu J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 389(6651):618–622

    Article  CAS  PubMed  Google Scholar 

  • Kureel J, Dixit M, Tyagi A, Mansoori M, Srivastava K, Raghuvanshi A et al (2014) miR-542–3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis 5(2):e1050-e

    Article  Google Scholar 

  • Kureel J, John AA, Prakash R, Singh D (2018) MiR 376c inhibits osteoblastogenesis by targeting Wnt3 and ARF-GEF-1-facilitated augmentation of beta-catenin transactivation. J Cell Biochem 119(4):3293–3303

    Article  CAS  PubMed  Google Scholar 

  • Kwon OH, Lee C-K, Lee YI, Paik S-G, Lee H-J (2005) The hematopoietic transcription factor PU. 1 regulates RANK gene expression in myeloid progenitors. Biochem Biophys Res Commun 335(2):437–446

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Yasuda S, Kono M, Kudo Y, Shimamura S, Kono M et al (2020) MicroRNA-9 ameliorates destructive arthritis through down-regulation of NF-kappaB1-RANKL pathway in fibroblast-like synoviocytes. Clin Immunol (orlando, Fla) 212:108348

    Article  CAS  Google Scholar 

  • Lefevre S, Meier FM, Neumann E, Muller-Ladner U (2015) Role of synovial fibroblasts in rheumatoid arthritis. Curr Pharm Des 21(2):130–141

    Article  CAS  PubMed  Google Scholar 

  • Lenert A, Fardo DW (2017) Detecting novel micro RNAs in rheumatoid arthritis with gene-based association testing. Clin Exp Rheumatol 35:586–592

    PubMed  Google Scholar 

  • Li P, Schwarz EM, O’Keefe RJ, Ma L, Boyce BF, Xing L (2004a) RANK signaling is not required for TNFα-mediated increase in CD11bhi osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis. J Bone Miner Res 19(2):207–213

    Article  CAS  PubMed  Google Scholar 

  • Li P, Schwarz EM, O’Keefe RJ, Ma L, Looney RJ, Ritchlin CT et al (2004b) Systemic tumor necrosis factor α mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor α–transgenic mice. Arthritis Rheumatism 50(1):265–276

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Hassan MQ, Volinia S, Van Wijnen AJ, Stein JL, Croce CM et al (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci 105(37):13906–13911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhang P, Gu J (2015) miR-29a modulates tumor necrosis factor-α-induced osteogenic inhibition by targeting Wnt antagonists. Develop Growth Differ 57(3):264–273

    Article  CAS  Google Scholar 

  • Li K, Zhang J, Yu J, Liu B, Guo Y, Deng J et al (2015) MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J Biol Chem 290(13):8185–8195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Peng B, Zhu X, Wang P, Sun K, Lei X et al (2019) MiR-210-3p inhibits osteogenic differentiation and promotes adipogenic differentiation correlated with Wnt signaling in ERα-deficient rBMSCs. J Cell Physiol 234(12):23475–23484

    Article  CAS  PubMed  Google Scholar 

  • Lin EA, Kong L, Bai X-H, Luan Y, Liu C-j (2009) miR-199a*, a bone morphogenic protein 2-responsive microRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem 284(17):11326–11335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhong L, Yuan T, Chen S, Zhou Y, An L et al (2018) MicroRNA-155 inhibits the osteogenic differentiation of mesenchymal stem cells induced by BMP9 via downregulation of BMP signaling pathway. Int J Mol Med 41(6):3379–3393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Beck GR Jr, Gilbert LC, Camalier CE, Bateman NW, Hood BL et al (2011) Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation. J Bone Miner Res 26(1):209–219

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Jemal A, Fedewa SA, Islami F, Lichtenfeld JL, Wender RC et al (2019) The American Cancer Society 2035 challenge goal on cancer mortality reduction. CA 69(5):351–362

    PubMed  Google Scholar 

  • Madhyastha R, Madhyastha H, Pengjam Y, Nurrahmah QI, Nakajima Y, Maruyama M (2019) The pivotal role of microRNA-21 in osteoclastogenesis inhibition by anthracycline glycoside aloin. J Nat Med 73(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM (2017) Synovium-derived microRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res 32(3):461–472

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Barad O, Agami R, Geiger B, Hornstein E (2010) miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc Natl Acad Sci 107(36):15804–15809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S et al (2004) Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU. 1. J Biol Chem 279(44):45969–45979

    Article  CAS  PubMed  Google Scholar 

  • Mellis DJ, Itzstein C, Helfrich MH, Crockett JC (2011) Thematic review the skeleton: a multi-functional complex organ. The role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 211:131–143

    Article  CAS  PubMed  Google Scholar 

  • Mi W, Shi Q, Chen X, Wu T, Huang H (2016) miR-33a-5p modulates TNF-α-inhibited osteogenic differentiation by targeting SATB2 expression in hBMSCs. FEBS Lett 590(3):396–407

    Article  CAS  PubMed  Google Scholar 

  • Miao C-g, Yang Y-y, He X, Li X-f, Huang C, Huang Y et al (2013) Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell Signal 25(10):2069–2078

    Article  CAS  PubMed  Google Scholar 

  • Miao C-g, Yang Y-y, He X, Huang C, Huang Y, Qin D et al (2014) MicroRNA-152 modulates the canonical Wnt pathway activation by targeting DNA methyltransferase 1 in arthritic rat model. Biochimie 106:149–156

    Article  CAS  PubMed  Google Scholar 

  • Miao C-g, Shi W-j, Xiong Y-y, Yu H, Zhang X-l, Qin M-s et al (2015) miR-375 regulates the canonical Wnt pathway through FZD8 silencing in arthritis synovial fibroblasts. Immunol Lett 164(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Miao C-g, Shi W-j, Xiong Y-y, Yu H, Zhang X-l, Qin M-S et al (2015) MicroRNA-663 activates the canonical Wnt signaling through the adenomatous polyposis coli suppression. Immunol Lett 166(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Minguzzi M, Panichi V, Cattini L, Filardo G, Mariani E, Borzì R (2018) Effects of notch-1 knockdown on the proliferation and the differentiation of human osteoarthritis chondrocytes. Osteoarthritis Cartilage 26:S110–S111

    Article  Google Scholar 

  • Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H (2013) miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther 15(5):R102

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi H, Hemmatzadeh M, Babaie F, Gowhari Shabgah A, Azizi G, Hosseini F et al (2018) MicroRNA implications in the etiopathogenesis of ankylosing spondylitis. J Cell Physiol 233(8):5564–5573

    Article  CAS  PubMed  Google Scholar 

  • Mu N, Gu J, Huang T, Zhang C, Shu Z, Li M et al (2016) A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. Sci Rep 6(1):20059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Nawata M, Wakitani S (2005) Expression profiles and functional analyses of Wnt-related genes in human joint disorders. Am J Pathol 167(1):97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M et al (2008) Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58(5):1284–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M (2011) The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 63(6):1582–1590

    Article  CAS  PubMed  Google Scholar 

  • Nanjundaiah SM, Astry B, Moudgil KD (2013) Mediators of inflammation-induced bone damage in arthritis and their control by herbal products. Evid -Based Complement Altern Med. https://doi.org/10.1155/2013/518094

    Article  Google Scholar 

  • Narayanan A, Srinaath N, Rohini M, Selvamurugan N (2019) Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci 232:116676

    Article  CAS  PubMed  Google Scholar 

  • Niimoto T, Nakasa T, Ishikawa M, Okuhara A, Izumi B, Deie M et al (2010a) MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet Disord 11:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Nusse RJN (2015) Cell signalling: disarming Wnt. Nature 519(7542):163–164

    Article  CAS  PubMed  Google Scholar 

  • Obata T, Brown GE, Yaffe MB (2000) MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med 28(4):N67–N77

    Article  CAS  PubMed  Google Scholar 

  • Ogando J, Tardáguila M, Díaz-Alderete A, Usategui A, Miranda-Ramos V, Martínez-Herrera DJ et al (2016) Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients. Sci Rep 6(1):20223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnuma K, Kasagi S, Uto K, Noguchi Y, Nakamachi Y, Saegusa J et al (2019) MicroRNA-124 inhibits TNF-α-and IL-6-induced osteoclastogenesis. Rheumatol Int 39(4):689–695

    Article  CAS  PubMed  Google Scholar 

  • Pandis I, Ospelt C, Karagianni N, Denis MC, Reczko M, Camps C et al (2012) Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann Rheum Dis 71(10):1716–1723

    Article  CAS  PubMed  Google Scholar 

  • Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10(4):R101

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Zhang X, Feng X, Fan X, Jin Z (2017) The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 8(8):14089–14106

    Article  PubMed  Google Scholar 

  • Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14(11):628–638

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C et al (2017) Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem 292(26):11021–11033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajabinejad M, Asadi G, Ranjbar S, Varmaziar FR, Karimi M, Salari F et al (2022) The MALAT1-H19/miR-19b-3p axis can be a fingerprint for diabetic neuropathy. Immunol Lett. https://doi.org/10.1016/j.imlet.2022.03.004

    Article  PubMed  Google Scholar 

  • Rosen V (2009) BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 20(5–6):475–480

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld JA, Ballif BC, Lucas A, Spence EJ, Powell C, Aylsworth AS et al (2009) Small deletions of SATB2 cause some of the clinical features of the 2q33. 1 microdeletion syndrome. PLoS ONE. https://doi.org/10.1371/journal.pone.0006568

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross FP, Teitelbaum SL (2005) αvβ3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 208(1):88–105

    Article  CAS  PubMed  Google Scholar 

  • Rouas R, Fayyad-Kazan H, El Zein N, Lewalle P, Rothé F, Simion A et al (2009) Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol 39(6):1608–1618

    Article  CAS  PubMed  Google Scholar 

  • Saferding V, Puchner A, Goncalves-Alves E, Hofmann M, Bonelli M, Brunner J et al (2017) MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J Autoimmun. https://doi.org/10.1016/j.jaut.2017.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Salaun B, Yamamoto T, Badran B, Tsunetsugu-Yokota Y, Roux A, Baitsch L et al (2011) Differentiation associated regulation of microRNA expression in vivo in human CD8+ T cell subsets. J Transl Med 9:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samimi Z, Kardideh B, Zafari P, Bahrehmand F, Roghani SA, Taghadosi M (2019) The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients. Mol Biol Rep 46(6):6353–6360

    Article  CAS  PubMed  Google Scholar 

  • Sassi Y, Avramopoulos P, Ramanujam D, Grüter L, Werfel S, Giosele S et al (2017) Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat Commun 8(1):1–11

    Article  CAS  Google Scholar 

  • Saydam O, Shen Y, Würdinger T, Senol O, Boke E, James MF et al (2009) Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Mol Cell Biol 29(21):5923–5940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schett G (2009) Bone formation versus bone resorption in ankylosing spondylitis. Molecular mechanisms of Spondyloarthropathies. Springer, pp 114–121

    Chapter  Google Scholar 

  • Schett G, Zwerina J, David J-P (2008) The role of Wnt proteins in arthritis. Nat Clin Pract Rheumatol 4(9):473–480

    Article  CAS  PubMed  Google Scholar 

  • Sen M (2005) Wnt signalling in rheumatoid arthritis. Rheumatology 44(6):708–713

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sharma H (2017) Bone morphogenetic proteins: an overview. Ann Appl Bio-Sci 4(2):R35–R37

    Google Scholar 

  • Shen H, Lu C, Shi J, Li H, Si J, Shen G (2019) Satb2 expression in Foxc1-promoted osteogenic differentiation of MC3T3-E1 cells is negatively regulated by microRNA-103-3p. Acta Biochim Biophys Sin 51(6):588–597

    Article  CAS  PubMed  Google Scholar 

  • Shi D-L, Shi G-R, Xie J, Du X-Z, Yang H (2016) MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in rheumatoid arthritis. Mol Cells 39(8):611–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M et al (2013) Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 23(4):674–685

    Article  CAS  PubMed  Google Scholar 

  • Sieper J, Poddubnyy D (2017) Axial spondyloarthritis. Lancet 390(10089):73–84

    Article  PubMed  Google Scholar 

  • Sinha KM, Zhou X (2013) Genetic and molecular control of osterix in skeletal formation. J Cell Biochem 114(5):975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staal FJ, Luis TC, Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8(8):581–593

    Article  CAS  PubMed  Google Scholar 

  • Stanczyk J, Ospelt C, Karouzakis E, Filer A, Raza K, Kolling C et al (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 63(2):373–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Stittrich A-B, Haftmann C, Sgouroudis E, Kühl AA, Hegazy AN, Panse I et al (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 11(11):1057

    Article  CAS  PubMed  Google Scholar 

  • Sugatani T, Hruska K (2007) MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem 101(4):996–999

    Article  CAS  PubMed  Google Scholar 

  • Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284(7):4667–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood J Am Soc Hematol 117(13):3648–3657

    CAS  Google Scholar 

  • Sujitha S, Rasool M (2019) Berberine coated mannosylated liposomes curtail RANKL stimulated osteoclastogenesis through the modulation of GSK3β pathway via upregulating miR-23a. Int Immunopharmacol 74:105703

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yan P, Chen Y, Chen Y, Yang J, Xu G et al (2015) MicroRNA-26b inhibits cell proliferation and cytokine secretion in human RASF cells via the Wnt/GSK-3β/β-catenin pathway. Diagn Pathol 10(1):1–9

    Article  Google Scholar 

  • Swafford D, Manicassamy SJ (2015) Wnt signaling in dendritic cells: its role in regulation of immunity and tolerance. Discov Med 19(105):303

    PubMed  PubMed Central  Google Scholar 

  • Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 103(33):12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taipaleenmäki H, Browne G, Akech J, Zustin J, van Wijnen AJ, Stein JL et al (2015) Targeting of Runx2 by miR-135 and miR-203 impairs progression of breast cancer and metastatic bone disease. Can Res 75(7):1433–1444

    Article  Google Scholar 

  • Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Huang Q, Wu L, Liu C, Cai A (2018) MiR-124 regulates osteoblast differentiation through GSK-3β in ankylosing spondylitis. Eur Rev Med Pharmacol Sci 22(20):6616–6624

    PubMed  Google Scholar 

  • Thielen NG, van der Kraan PM, van Caam AP (2019) TGFβ/BMP signaling pathway in cartilage homeostasis. Cells 8(9):969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomé M, López-Romero P, Albo C, Sepúlveda JC, Fernández-Gutiérrez B, Dopazo A et al (2011) miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ 18(6):985–995

    Article  PubMed  Google Scholar 

  • Trenkmann M, Brock M, Gay RE, Michel BA, Gay S, Huber LC (2013) Tumor necrosis factor alpha-induced microRNA-18a activates rheumatoid arthritis synovial fibroblasts through a feedback loop in NF-kappaB signaling. Arthritis Rheum 65(4):916–927

    Article  CAS  PubMed  Google Scholar 

  • Tsushima H, Okazaki K, Ishihara K, Ushijima T, Iwamoto Y (2015) CCAAT/enhancer-binding protein β promotes receptor activator of nuclear factor-kappa-B ligand (RANKL) expression and osteoclast formation in the synovium in rheumatoid arthritis. Arthritis Res Ther 17(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Valenta T, Hausmann G, Basler K (2012) The many faces and functions of β-catenin. EMBO J 31(12):2714–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vienberg S, Geiger J, Madsen S, Dalgaard LT (2017) Micro RNA s in metabolism. Acta Physiol 219(2):346–361

    Article  CAS  Google Scholar 

  • Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208(1):126–140

    Article  CAS  PubMed  Google Scholar 

  • Walsh MC, Choi Y (2014) Biology of the RANKL–RANK–OPG system in immunity, bone, and beyond. Front Immunol. https://doi.org/10.3389/fimmu.2014.00511

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Yuan P (2019) GENE MIR-193A-3P influence osteoblast differentiation through up-regulation of LGR4/ATF4 signaling pathway. Osteoarthritis Cartilage 27:S204–S205

    Article  Google Scholar 

  • Wang W, Lian N, Li L, Moss HE, Wang W, Perrien DS et al (2009) Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development 136(24):4143–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-d, Huang X-f, Q-r Y (2014) Aberrant activation of the WNT/β-catenin signaling pathway in lupus nephritis. PLoS ONE 9(1):e84852

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YJ, Shen M, Wang S, Wen X, Han XR, Zhang ZF et al (2017) Inhibition of the TGF-beta1/Smad signaling pathway protects against cartilage injury and osteoarthritis in a rat model. Life Sci 189:106–113

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Cai J, Zhang J, Li C (2018) Mechanism of triptolide in treating ankylosing spondylitis through the antiossification effect of the BMP/Smad signaling pathway. Mol Med Rep 17(2):2731–2737

    CAS  PubMed  Google Scholar 

  • Weilbaecher KN, Motyckova G, Huber WE, Takemoto CM, Hemesath TJ, Xu Y et al (2001) Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitfmi/mi mice. Mol Cell 8(4):749–758

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zhu M, Rosier RN, Zuscik MJ, O’Keefe RJ, Chen D (2010) Beta-catenin, cartilage, and osteoarthritis. Ann N Y Acad Sci 1192(1):344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, Shiau AL, Wu CL (2012) Brief report: amelioration of collageninduced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 64(10):3240–3245. https://doi.org/10.1002/art.34550

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Zhou H, Hong Y, Li J, Jiang X, Huang H (2012a) miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 287(10):7503–7511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Xie M, Wang X, Jiang X, Li J, Huang H (2012b) miR-155 modulates TNF-α-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone 51(3):498–505

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Guo Q, Yang J, Ni B (2017) Tumor necrosis factor alpha promotes osteoclast formation via PI3K/Akt pathway-mediated Blimp1 expression upregulation. J Cell Biochem 118(6):1308–1315

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Pan Y, Guo X, Wu Y, Gu J, Cai D (2011) Expression of β-catenin in rheumatoid arthritis fibroblast-like synoviocytes. Scand J Rheumatol 40(1):26–33

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Zhou L, Li S, Hui T, Chen D (2016) Wnt/β-catenin signaling plays a key role in the development of spondyloarthritis. Ann N Y Acad Sci 1364(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Liang C-G, Li Y-F, Ji Y-H, Qiu W-J, Tang X-Z (2015) Involvement of Notch1/Hes signaling pathway in ankylosing spondylitis. Int J Clin Exp Pathol 8(3):2737–2745

    PubMed  PubMed Central  Google Scholar 

  • Xue F, Zhang C, He Z, Ding L, Xiao H (2013) Analysis of critical molecules and signaling pathways in osteoarthritis and rheumatoid arthritis. Mol Med Rep 7(2):603–607

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Zhao W, Ou Q, Liang L, Lin X, Wang Y (2017) MicroRNA-214 suppresses osteogenic differentiation of human periodontal ligament stem cells by targeting ATF4. Stem Cells Int. https://doi.org/10.1155/2017/3028647

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarilina A, Xu K, Chen J, Ivashkiv LB (2011) TNF activates calcium–nuclear factor of activated T cells (NFAT) c1 signaling pathways in human macrophages. Proc Natl Acad Sci 108(4):1573–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafari P, Yari K, Mostafaei S, Iranshahi N, Assar S, Fekri A et al (2018) Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed rheumatoid arthritis patients. Immunol Invest 47(6):632–642

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-H, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-α (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276(1):563–568

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J et al (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 26(8):1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hou C, Meng F, Zhao X, Zhang Z, Huang G et al (2015) MiR-455-3p regulates early chondrogenic differentiation via inhibiting Runx2. FEBS Lett 589(23):3671–3678

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang LS, Zhou YH (2017) Elevated microRNA-125b promotes inflammation in rheumatoid arthritis by activation of NF-kappaB pathway. Biomed Pharmacother 93:1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q et al (2017) Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res 32(12):2466–2475

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gao F, Peng C, Zheng C, Wu M (2018) miR-485-5p promotes osteoporosis via targeting Osterix. Eur Rev Med Pharmacol Sci 22(15):4792–4799

    PubMed  Google Scholar 

  • Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y et al (2012) The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nat Med 18(7):1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Jiao H, Li S, Cao H, Galson DL, Zhao Z et al (2013) ATF4 promotes bone angiogenesis by increasing VEGF expression and release in the bone environment. J Bone Miner Res 28(9):1870–1884

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research has been supported by grants from the Kermanshah University of Medical Sciences (KUMS).

Author information

Authors and Affiliations

Authors

Contributions

SA, NS, FM, and EA completed the first draft and MR prepared the figures. AR and MHN developed the idea and supervised the writing process. All authors participated in the revision of the manuscript and approved its final version.

Corresponding author

Correspondence to Alireza Rezaiemanesh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

There is no ethical statement for this manuscript.

Consent for publication

Written informed consent was obtained from all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadiasl, S., Rajabinejad, M., Soleimanifar, N. et al. MicroRNAs-mediated regulation pathways in rheumatic diseases. Inflammopharmacol 31, 129–144 (2023). https://doi.org/10.1007/s10787-022-01097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-022-01097-6

Keywords

Navigation