Skip to main content

Advertisement

Log in

Polysaccharide extract of Caesalpinia ferrea (Mart) pods attenuates inflammation and enhances the proliferative phase of rat cutaneous wounds

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Pods of Caesalpinia ferrea, popularly used to treat inflammatory processes, were collected to obtain the polysaccharide-rich extract, presenting anti-inflammatory and antinociceptive effects in acute inflammation models. This study aimed to evaluate the anti-inflammatory, antinociceptive and healing activities of the polysaccharide-rich extract from Caesalpinia ferrea pods (PEp-Cf) in the rat model of cutaneous excisional wound. PEp-Cf (0.025–0.1%) or 0.9% NaCl was topically applied in the wounds at dorsal thoracic region (2×/day) during 21 days for measurement of clinical signs (hyperemia, inflammatory exudate, edema, nociception), wound size, histopathological/histomorphometric, oxidative/inflammatory markers and systemic toxicity. PEp-Cf at 0.1% reduced wound area and increased ulcer contraction [days 2 and 10 (21–78%)]. PEp-Cf reduced clinical signs [days 2 and 5 (2.2–2.8×)] and modulated the healing inflammatory phase via stimulation of epithelialization (days 10 and 14), and inhibition of polymorphonuclears [days 2 and 5 (71–74%)], protein leakage [days 2 and 5 (28–41%)], nitrate [days 2 and 5 (2.2–6×)] and malondialdehyde [days 2 and 5 (46–49%)]. PEp-Cf increased the number of blood vessels [days 5 and 7 (3.1–9.6×)], fibroblasts [days 5 and 7 (2.1–6.4×)] and collagen [days 5 to 14 (1.5–1.8×)]. In conclusion, the topical application of PEp-Cf at 0.1% accelerates the healing process of rat cutaneous wounds via modulation of the inflammatory and proliferative phases, being devoid of systemic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  CAS  PubMed  Google Scholar 

  • Araujo DF, Madeira JC, Cunha AP, Ricardo NMPS, Bezerra FF, Mourão PAS, Assreuy MAS, Pereira MG et al (2021) Structural characterization of anticoagulant and antithrombotic polysaccharides isolated from Caesalpiniaferrea stem barks. Int J Biol Macromol 21:141–8130

    Google Scholar 

  • Ayman A, Hiroshi U, Yuji U (2011) The effect of aloe vera oral administration on cutaneous wound healing in type 2 diabetic rats. J Vet Med Sci 73:583–589

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bradley PP, Priebat DA, Christensen RD, Rothstei G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Investig Dermatol 78:206–209

    Article  CAS  PubMed  Google Scholar 

  • Braga R (1976) Plantas do Nordeste, especialmente do Ceará. Fortaleza: Departamento Nacional de Obras Contra as Secas540

  • Brizeno ALS et al (2016) Delayed healing of oral mucosa in a diabetic rat model: implication of TNF-α, IL-1β and FGF-2. Life Sci 155:36–47

    Article  CAS  PubMed  Google Scholar 

  • Carvalho JCT, Teixeira JRM, Souza PJC, Bastos JK, Santos-Filho D, Sarti SJ (1996) Preliminary studies of analgesic and anti-inflammatory properties of Caesalpiniaferrea crude extract. J Ethnopharmacol 53:175–178

    Article  CAS  PubMed  Google Scholar 

  • Cighetti G, Debiasi S, Paroni R, Allevi P (1999) Free and total malondialdehyde assessment in biological matrices by gas chromatography-mass spectrometry: what is needed for an accurate detection. Anal Biochem 266:222–229

    Article  CAS  PubMed  Google Scholar 

  • Da Silva PP et al (2018) The polysaccharide-rich tea of Ximeniaamericana barks prevents indomethacin-induced gastrointestinal damage via neutrophil inhibition. J Ethnopharmacol 224:195–201

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Er TK, Tsai SM, Wu SH, Chiang W, Lin HC, Lin SF, Wu SH, Tsai LY, Liu TZ (2009) Antioxidant status and superoxide anion radical generation in acute myeloid leukemia. Clin Biochem 40:1015–1019

    Article  CAS  Google Scholar 

  • Farris AB, Catherine DA, Nicole B, Patricia ADP, Collins AB, Ellie M, Neal S, Paul CG, Robert BC (2011) Morphometric and Visual Evaluation of Fibrosis in Renal Biopsies. J Am Soc Nephrol 22:176–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira MRA, Soares LAL (2015) Libidibiaferrea (Mart. exTul.) a review of the biological activities and phytochemical composition 9:140–150

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Grosu I, Kock M (2011) New concepts in acute pain management: strategies to prevent chronic postsurgical pain, opioid-induced hyperalgesia, and outcome measures. Anesthesiol Clin 29:311–327

    Article  PubMed  Google Scholar 

  • Heng MCY (2011) Wound healing in adult skin: aiming for perfect regeneration. Int J Dermatol 50:1058–1066

    Article  PubMed  Google Scholar 

  • Holanda BF, Freitas de Araujo D, da Silva JNR, Pereira MG, de Freitas PA, Assreuy AM (2021) Polysaccaride-rich extract of Caesalpinaferrea stem barks attenuates mice acute inflammation induced by zymosan: oxidative stress modulation. J Ethnopharmacol 267:113501

    Article  CAS  PubMed  Google Scholar 

  • Jettanacheawchankit S, Sasithanasate S, Sangvanich P, Banlunara W, Thunyakitpisal P (2009) Acemannan stimulates gingival fibroblast proliferation; expressions of keratinocyte growth factor-1, vascular endothelial growth factor, and type I collagen and wound healing. J Pharmacol Sci 109:525–531

    Article  CAS  PubMed  Google Scholar 

  • Katz LB, Theobald HM, Bookstaff RC, Peterson RE (1984) Characterization of the enhanced paw edema response to carrageen and dextran in 2,3,7,9-tetrachlorodibenzo-p-dioxin-treated rats. J Pharmacol Exp Ther 230:670–677

    CAS  PubMed  Google Scholar 

  • Klaumann PR, Wouk AFPF, Sillas T (2008) Pathophysiology of pain. Arch Vet Sci 13:1–12

    Google Scholar 

  • Kobayashi YTS, Almeida VT, Bandeira T, Alcántara BN, Silva ASB, Barbosa WLR, Silva PB, Monteiro MVB, Almeida MB (2015) Avaliação fotoquímica e potencial cicatrizante do extrato etanólico dos frutos de Jucá (Libidibiaferrea) em ratos Wistar. Braz J Vet Res Anim Sci 52:34–40

    Article  Google Scholar 

  • Lima MFF, Araujo Silva JWS, Silva JK, Moura AHN, Lopes RLF, Cordeiro BA, Cordeiro RP, Melo AFM (2019) Avaliação toxicológica através do bioensaio com Artemia salina Leach de espécimes vegetais pertencentes à caatinga. Brazilian Journal of Health Research 2:5950–5963

    Article  Google Scholar 

  • Liu J, Willfo S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization and biomedical applications. Bioact Carbohydr Diet Fibre 5:31–61

    Article  CAS  Google Scholar 

  • Luo Y, Diao H, Xia S, Dong L, Chen J, Zhang J (2010) A physiologically active polysaccharide hydrogel promotes wound healing. J Biomed Mater Res 94:193–204

    Article  CAS  Google Scholar 

  • Madeira JC, da Silva GVL, Batista JJ, Saraiva GD, Santos GRC, Assreuy AMS, Mourão PAS, Pereira MG (2018) An arabinogalactan-glycoconjugate from Genipaamericana leaves present anticoagulant, antiplatelet and antithrombotic effects. Carbohyd Polym 202:554–562

    Article  CAS  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Mukinda JT, Syce JA (2007) Acute and chronic toxicity of the aqueous extract of Artemisia afra in rodents. J Ethnopharmacol 112:138–144

    Article  CAS  PubMed  Google Scholar 

  • Nakamura ES, Kurosaki F, Arisawa M, Mukainaka T, Takayasu J, Okuda M, Tokuda H, Nishino H, Pastore F (2002) Cancer chemopreventive effects of a Brazilian folk medicine, Jucá, on in vivo two stage skin carcinogenesis. J Ethnopharmacol 81:135–137

    Article  CAS  PubMed  Google Scholar 

  • Nonato DTT, Vasconcelos SMM, Mota MRL, de Barros Silva PG, Cunha AP, Ricardo NMPS, Pereira MG, Assreuy AMS, Chaves EMC (2018) The anticonvulsant effect of a polysaccharide-rich extract from Genipaamericana leaves is mediated by GABA receptor. Biomed Pharmacother 101:181–187

    Article  CAS  PubMed  Google Scholar 

  • Okonkwo UA, Dipietro LA (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18:1419–1434

    Article  PubMed Central  CAS  Google Scholar 

  • Oliveira AF, Batista JS, Paiva ES, Silva AE, Farias YJMD, Damasceno CAR, Brito PD, Queiroz SAC, Rodrigues CMF, Freitas CIA (2010) Avaliação da atividade cicatrizante do jucá (Caesalpiniaferrea Mart. exTul. var. ferrea) em lesões cutâneas de caprinos. Revista Brasileira De Plantas Medicinais 12:302–310

    Article  Google Scholar 

  • Pedrosa TN, Barros AO, Nogueira JR, Fruet AC, Rodrigues IC, Calcagno DQ, Smith MAC, Souza TP, Barros SBM, Vasconcellos MC (2016) Anti-wrinkle and anti-whitening effects of jucá (Libidibiaferrea Mart.) extracts. Arch Dermatol Res 308:643–654

    Article  PubMed  Google Scholar 

  • Pereira LP, Mota MRL, Brizeno LA, Nogueira FC, Pereira MG, Assreuy AM (2016) Modulator effect of a polysaccharide-rich extract from Caesalpiniaferrea stem barks in rat cutaneous wound healing: role of TNF-α, IL-1β, NO, TGF-β. J Ethnopharmacol 187:213–223

    Article  CAS  PubMed  Google Scholar 

  • Pereira RF, Bartolo PJ (2016) Traditional therapies for skin wound healing. Adv Wound Care 5:208–229

    Article  Google Scholar 

  • Pereira LP, Silva RO, Bringel PH, Silva KE, Assreuy AM, Pereira MG (2012) Polysaccharide fractions of Caesalpiniaferrea pods: potential anti-inflammatory usage. J Ethnopharmacol 139:642–648

    Article  CAS  PubMed  Google Scholar 

  • Pickler TB, Lopes KP, Magalhães SA, Krueger CMA, Martins MM, Filho VC, Jozala AF, Grotto D, Gerenutti M (2019) Effect of Libidibiaferrea bark and seed in maternal reproductive and biochemical outcomes and fetal anomaly in rats. Birth Defects Research 111:863–871

    Article  CAS  PubMed  Google Scholar 

  • Portou MJ, Bakera D, Abraham D, Tsui J (2015) The innate immune system, toll-like receptors and dermal wound healing: a review. Vascul Pharmacol 71:31–36

    Article  CAS  PubMed  Google Scholar 

  • Prazeres LDKT, Aragão TP, Brito SA, Almeida CLF, Silva AD, Paula MMF, Farias JS, Vieira LD, Damasceno BPGL, Rolim LA (2019) Antioxidant and antiulcerogenic activity of the dry extract of pods of Libidibiaferrea Mart. exTul. (Fabaceae). Oxid Med Cell Longev 2019:1–23

    Article  CAS  Google Scholar 

  • Queiroz MLS, Justo GZ, Valadares MC, Silva FRP (2001) Evaluation of Caesalpiniaferrea extract on bone marrow hematopoiesis in the murine models of listeriosis and Ehrlich ascites tumor. Immunopharmacol Immunotoxicol 23:367–382

    Article  CAS  PubMed  Google Scholar 

  • Ramsey DT, Pope ER, Wagner C, Berg JN, Swaim SF (1995) Effects of three occlusive dressing materials on healing of full-thickness skin wounds in dogs. Am J Vet Res 56:941–949

    CAS  PubMed  Google Scholar 

  • Romana-Souza B, Porto LC, Costa AMA (2010) Cutaneous wound healing of chronically stressed mice is improved catecholamines blockade. Exp Dermatol 19:821–829

    Article  CAS  PubMed  Google Scholar 

  • Schirato GV, Monteiro FMFS, Carneiro AMA (2006) The polysaccharide from Anacardiumoccidentale L. in the inflammatory phase of the cutaneous wound healing. Ciência Rural 36:149–154

    Article  CAS  Google Scholar 

  • Shahbuddin M, Shahbuddin D, Bullock AJ, Ibrahim H, Rimmer S, Macneil S (2013) High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes. Carbohyd Res 13:90–99

    Article  CAS  Google Scholar 

  • Shetty S, Udupa S, Udupa L, Somayaji N (2006) Wound healing activity of Ocimum sanctum Linn with supportive role of antioxidant enzymes. Indian J Physiol Pharmacol 50:163–168

    PubMed  Google Scholar 

  • Siddiqui N, Rauf A, Latif A, Mahmood Z (2017) Spectrophotometric determination of the total phenoliccontent, spectral and fluorescence study of the herbal Unanidrug Gul-eZoofa. Journal of Taibah University of Science 12:360–363

    Article  Google Scholar 

  • Silva F, Sales M, Sá O, Santana G, Deus M, Sousa J, Ferreira P, Peron A (2015) Potencial citotóxico, genotóxico e citoprotetor de extratos aquosos de Caesalpiniapyramidalis Tul., Caesalpiniaferrea Mart. e Caesalpiniapulcherrima Sw. Revista Brasileira Biociências 2015:101–109

    Google Scholar 

  • Singer AJ, Cark RA (1999) Mechanism of disease: cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  • Sivamani RK, Ma BR, Wehrli LN, Maverakis E (2012) Phytochemicals and naturally derived substances for wound healing. Adv Wound Care 1:213–217

    Article  Google Scholar 

  • Stephen YG, Emelia K, Francis A, Kofi A, Eric W (2010) Wound healing properties and kill kinetics of Clerodendronsplendens G. Don, a Ghanaian wound healing plant. Pharmacognosy Research 2:63–68

    Article  Google Scholar 

  • Teo S, Stirling D, Thomas S, Hoberman A, Kiorpes A, Khetani V (2002) A 90-day oral gavage toxicity study of p-methylphenidate and d, l-methylphenidate in Sprague-Dawley rats. Toxicology 179:183–196

    Article  CAS  PubMed  Google Scholar 

  • Wang PH et al (2018) Wound healing. J Chin Med Assoc 81:94–101

    Article  PubMed  Google Scholar 

  • Wlascheck M, Scharffetter-Kochanek K (2005) Oxidative stress in chronic venous leg ulcers. Wound Repair Regeneration 13:452–461

    Article  Google Scholar 

  • Zippel J, Deters A, Hensel A (2009) Arabinogalactans from Mimosa tenuiflora (Willd.) Poiret bark as active principles for wound-healing properties: specific enhancement of dermal fibroblast activity and minor influence on HaCaT keratinocytes. J Ethnopharmacol 30:391–396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES, finance code 001). The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Fundação Cearense de Amparo a Pesquisa-FUNCAP. Assreuy AM are senior investigators of CNPq—(Process No. 308433/2017-3). Statistical review: Paulo Goberlânio de Barros Silva.

Author information

Authors and Affiliations

Authors

Contributions

Project supervision: MRLM, AMSA. Polysaccharid extraction: MGP. Execution of methodology: TVM, LPP, DQS. Review and writing: JRLCF, MRLM, AMSA, MGP, APNNA.

Corresponding author

Correspondence to Ana Maria Sampaio Assreuy.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, M.R.L., do Carmo Filho, J.R.L., Martins, T.V. et al. Polysaccharide extract of Caesalpinia ferrea (Mart) pods attenuates inflammation and enhances the proliferative phase of rat cutaneous wounds. Inflammopharmacol 30, 1799–1810 (2022). https://doi.org/10.1007/s10787-022-01024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-022-01024-9

Keywords

Navigation