Skip to main content

Advertisement

Log in

Montelukast suppresses the development of irritable bowel syndrome phenotype possibly through modulating NF-κB signaling in an experimental model

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Irritable bowel syndrome (IBS) is a functional gut disorder with multi-factorial pathophysiology that causes recurring pain or discomfort in the abdomen, as well as altered bowel habits. Montelukast, a well-known cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is widely used for the anti-inflammatory management of asthma. The present study aimed to evaluate the effects of pharmacological inhibition of CysLT1R on acetic acid-induced diarrhea-predominant IBS (D-IBS) in rats. Behavioral pain responses to noxious mechanical stimulation were decreased in the montelukast-treated rats as compared to the model animals following colorectal distension (CRD)-induced visceral hypersensitivity. Stool frequency decreased dose-dependently by montelukast in IBS rats exposed to restraint stress. A significantly shorter immobility time was also observed in IBS rats who received montelukast vs IBS group in the forced swimming test (depression-like behavior). Furthermore, there were significant decreases in the NF-κB protein expression, inflammatory cytokine (TNF-α, and IL-1ß) levels, and histopathological inflammatory injuries concomitant with increased anti-inflammatory cytokine, IL-10, in montelukast-treated rats compared with the IBS group. Cysteinyl leukotriene production and CysLT1R mRNA expression showed no remarkable differences among the experimental groups. The present results suggest the possible beneficial effects of montelukast in the management of D-IBS symptoms. The molecular mechanism underlying such effects, at least to some extent, might be through modulating CysLT1R-mediated NF-κB signaling. Yet, more studies are required to demonstrate the clinical potential of this drug for IBS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

Not applicable.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdullayev R, Makhmudova L (2021) Features of chemical elements in various forms of irritable bowel syndrome. Ann Rom Soc Cell Biol 25:2993–3000

    Google Scholar 

  • Al-Chaer ED, Kawasaki M, Pasricha PJ (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119:1276–1285

    CAS  PubMed  Google Scholar 

  • Al-Kuraishy HM, Al-Gareeb AI, Almulaiky YQ, Cruz-Martins N, Batiha GE-S (2021) Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of covid-19: the enigmatic entity. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2021.174196

    Article  PubMed  PubMed Central  Google Scholar 

  • Bäck M, Powell WS, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE (2014) Update on leukotriene, lipoxin and oxoeicosanoid receptors: iuphar review 7. Br J Pharmacol 171:3551–3574

    PubMed  PubMed Central  Google Scholar 

  • Camilleri M (2012) Peripheral mechanisms in irritable bowel syndrome. N Engl J Med 367:1626–1635

    CAS  PubMed  Google Scholar 

  • Cangemi DJ, Lacy BE (2019) Management of irritable bowel syndrome with diarrhea: a review of nonpharmacological and pharmacological interventions. Ther Adv Gastroenterol 12:1756284819878950

    Google Scholar 

  • Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE (2013) Eicosanoids and their drugs in cardiovascular diseases: focus on atherosclerosis and stroke. Med Res Rev 33:364–438

    CAS  PubMed  Google Scholar 

  • Chowdhury M, Uddin M, Das S, Hoque M (2013) Montelukast in allergic rhinitis: a review. Med Today 24:75–78

    Google Scholar 

  • Çikler E, Ersoy Y, Çetinel Ş, Ercan F (2009) The leukotriene D4 receptor antagonist, montelukast, inhibits mast cell degranulation in the dermis induced by water avoidance stress. Acta Histochem 111:112–118

    PubMed  Google Scholar 

  • Cojocariu RO, Balmus IM, Lefter R, Ababei DC, Ciobica A, Hritcu L, Kamal F, Doroftei B (2020) Behavioral and oxidative stress changes in mice subjected to combinations of multiple stressors relevant to irritable bowel syndrome. Brain Sci 10:865

    CAS  PubMed Central  Google Scholar 

  • Colomier E, Algera J, Melchior C (2021) Pharmacological therapies and their clinical targets in irritable bowel syndrome with diarrhea. Front Pharmacol 11:2464

    Google Scholar 

  • Dong Y, Baumeister D, Berens S, Eich W, Tesarz J (2019) High rates of non-response across treatment attempts in chronic irritable bowel syndrome: results from a follow-up study in tertiary care. Front Psych 10:714

    Google Scholar 

  • Fee WH (2002) Irritable bowel syndrome helped by montelukast. Chest J 122:1497–1497

    Google Scholar 

  • Ghorbanzadeh B, Mansouri MT, Sahraei H, Alboghobeish S (2016) Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of montelukast in the animal models of pain. Eur J Pharmacol 779:38–45

    CAS  PubMed  Google Scholar 

  • He X, Cui L-H, Wang X-H, Yan Z-H, Li C, Gong S-D, Zheng Y, Luo Z, Wang Y (2017) Modulation of inflammation by toll-like receptor 4/nuclear factor-kappa b in diarrhea-predominant irritable bowel syndrome. Oncotarget 8:113957

    PubMed  PubMed Central  Google Scholar 

  • Herbst-Robinson KJ, Liu L, James M, Yao Y, Xie SX, Brunden KR (2015) Inflammatory eicosanoids increase amyloid precursor protein expression via activation of multiple neuronal receptors. Sci Rep 5:1–16

    Google Scholar 

  • Holma R, Salmenperä P, Riutta A, Virtanen I, Korpela R, Vapaatalo H (2001) Acute effects of the cys-leukotriene-1 receptor antagonist, montelukast, on experimental colitis in rats. Eur J Pharmacol 429:309–318

    CAS  PubMed  Google Scholar 

  • Holma R, Salmenperä P, Virtanen I, Vapaatalo H, Korpela R (2007) Prophylactic potential of montelukast against mild colitis induced by dextran sulphate sodium in rats. J Physiol Pharmacol 58:455–467

    CAS  PubMed  Google Scholar 

  • Hosseindoost S, Hashemizadeh S, Gharaylou Z, Dehpour AR, Javadi SAH, Arjmand B, Hadjighassem M (2020) Β2-adrenergic receptor stimulation upregulates cx43 expression on glioblastoma multiforme and olfactory ensheathing cells. J Mol Neurosci 70:1451–1460

    CAS  PubMed  Google Scholar 

  • Huang X-Q, Zhang X-Y, Wang X-R, Yu S-Y, Fang S-H, Lu Y-B, Zhang W-P, Wei E-Q (2012) Transforming growth factor Β1-induced astrocyte migration is mediated in part by activating 5-lipoxygenase and cysteinyl leukotriene receptor 1. J Neuroinflammation 9:145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ince I, Yoruk O, Ahiskalioglu A, Aksoy M, Dostbil A, Celik M (2015) Does montelukast have an effect on post-tonsillectomy pain control in children? A randomized trial study. Otolaryngol Head Neck Surg 153(2):269–274

    PubMed  Google Scholar 

  • Kabasakal L, Şener G, Çetinel Ş, Contuk G, Gedik N, Yeğen BÇ (2005) Burn-induced oxidative injury of the gut is ameliorated by the leukotriene receptor blocker montelukast. Prostaglandins Leukot Essent Fat Acids 72:431–440

    CAS  Google Scholar 

  • Khodabakhsh P, Bazrgar M, Dargahi L, Mohagheghi F, Taei AA, Parvardeh S, Ahmadiani A (2021) Does Alzheimer’s disease stem in the gastrointestinal system? Life Sci 287:120088

    CAS  PubMed  Google Scholar 

  • La J-H, Kim T-W, Sung T-S, Kang J-W, Kim H-J, Yang I-S (2003) Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis. World J Gastroenterol 9:2791–2795

    PubMed  PubMed Central  Google Scholar 

  • Liebregts T, Adam B, Bredack C, Röth A, Heinzel S, Lester S, Downie-Doyle S, Smith E, Drew P, Talley NJ (2007) Immune activation in patients with irritable bowel syndrome. Gastroenterology 132:913–920

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2 Δδc T method. Methods 25:402–408

    CAS  Google Scholar 

  • Maeba S, Ichiyama T, Ueno Y, Makata H, Matsubara T, Furukawa S (2005) Effect of montelukast on nuclear factor κb activation and proinflammatory molecules. Ann Allergy Asthma Immunol 94:670–674

    CAS  PubMed  Google Scholar 

  • Magnusson C, Mezhybovska M, Lörinc E, Fernebro E, Nilbert M, Sjölander A (2010) Low expression of cyslt 1 R and high expression of cyslt 2 R mediate good prognosis in colorectal cancer. Eur J Cancer 46:826–835

    CAS  PubMed  Google Scholar 

  • Mahgoub AA, El-Medany AA, Hager HH, Mustafa AA, El-Sabah DM (2003) Evaluating the prophylactic potential of zafirlukast against the toxic effects of acetic acid on the rat colon. Toxicol Lett 145:79–87

    CAS  PubMed  Google Scholar 

  • Manabe N, Tanaka T, Hata J, Kusunoki H, Haruma K (2009) Pathophysiology underlying irritable bowel syndrome-from the viewpoint of dysfunction of autonomic nervous system activity. J Smooth Muscle Res 45:15–23

    PubMed  Google Scholar 

  • Metters KM (1995) Leukotriene receptors. J Lipid Mediat Cell Signal 12:413–427

    CAS  PubMed  Google Scholar 

  • Mohamadin AM, Elberry AA, Elkablawy MA, Gawad HSA, Al-Abbasi FA (2011) Montelukast, a leukotriene receptor antagonist abrogates lipopolysaccharide-induced toxicity and oxidative stress in rat liver. Pathophysiology 18:235–242

    CAS  PubMed  Google Scholar 

  • Nayak A, Langdon RB (2007) Montelukast in the treatment of allergic rhinitis. Drugs 67:887–901

    CAS  PubMed  Google Scholar 

  • Nishikawa M, Hikasa Y, Hori K, Tanida N, Shimoyama T (1995) Effect of leukotriene C 4 D 4 antagonist on colonic damage induced by intracolonic administration of trinitrobenzene sulfonic acid in rats. J Gastroenterol 30:34–40

    CAS  PubMed  Google Scholar 

  • Paragomi P, Rahimian R, Kazemi MH, Gharedaghi MH, Khalifeh-Soltani A, Azary S, Javidan AN, Moradi K, Sakuma S, Dehpour AR (2014) Antinociceptive and antidiarrheal effects of pioglitazone in a rat model of diarrhoea-predominant irritable bowel syndrome: role of nitric oxide. Clin Exp Pharmacol Physiol 41:118–126

    CAS  PubMed  Google Scholar 

  • Pons L, Droy-Lefaix M-T, Bueno L (1992) Leukotriene D 4 participates in colonic transit disturbances induced by intracolonic administration of trinitrobenzene sulfonic acid in rats. Gastroenterology 102:149–156

    CAS  PubMed  Google Scholar 

  • Porsolt R, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Pournajaf S, Valian N, Shalmani LM, Khodabakhsh P, Jorjani M, Dargahi L (2020) Fingolimod increases oligodendrocytes markers expression in epidermal neural crest stem cells. Eur J Pharmacol 885:173502

    CAS  PubMed  Google Scholar 

  • Qin H-Y, Xiao H-T, Wu JC, Berman BM, Sung JJ, Bian Z-X (2012) Key factors in developing the trinitrobenzene sulfonic acid-induced post-inflammatory irritable bowel syndrome model in rats. World J Gastroenterol WJG 18:2481

    CAS  PubMed  Google Scholar 

  • Riccioni G, Di Ilio C, Conti P, Theoharides TC, D’orazio N (2004) Advances in therapy with antileukotriene drugs. Ann Clin Lab Sci 34:379–387

    CAS  PubMed  Google Scholar 

  • Sanghai N, Tranmer GK (2020) Taming the cytokine storm: repurposing montelukast for the attenuation and prophylaxis of severe covid-19 symptoms. Drug Discov Today. https://doi.org/10.1016/j.drudis.2020.09.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoors D, Smet M, Reiss T, Margolskee D, Cheng H, Larson P, Amin R, Somers G (1995) Single dose pharmacokinetics, safety and tolerability of Mk-0476, a new leukotriene d4-receptor antagonist, in healthy volunteers. Br J Clin Pharmacol 40:277–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shamshiri H, Paragomi P, Paydar MJ, Moezi L, Bahadori M, Behfar B, Ardalan FA, Dehpour AR (2009) Antinociceptive effect of chronic lithium on visceral hypersensitivity in a rat model of diarrhea-predominant irritable bowel syndrome: the role of nitric oxide pathway. J Gastroenterol Hepatol 24:672–680

    CAS  PubMed  Google Scholar 

  • Spiller R, Aziz Q, Creed F, Emmanuel A, Houghton L, Hungin P, Jones R, Kumar D, Rubin G, Trudgill N (2007) Guidelines on the irritable bowel syndrome: mechanisms and practical management. Gut 56:1770–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sung TS, La J-H, Kang TM, Kim TW, Yang I-S (2015) Visceral hypersensitivity and altered colonic motility in type 2 diabetic rat. J Neurogastroenterol Motil 21:581

    PubMed  PubMed Central  Google Scholar 

  • Taei AA, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M (2021) Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother 140:111709

    Google Scholar 

  • Tel BC, Telli G, Onder S, Nemutlu E, Bozkurt TE (2021) Investigation of the relationship between chronic montelukast treatment, asthma and depression-like behavior in mice. Exp Ther Med 21:1–1

    Google Scholar 

  • Wang L, Du C, Lv J, Wei W, Cui Y, Xie X (2011) Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 187:2336–2345

    CAS  PubMed  Google Scholar 

  • Wang H, Shi Q, Shi W, Zhang X, Wang X, Zhang L, Fang S, Lu Y, Zhang W, Wei E (2013) Expression and distribution of cysteinyl leukotriene receptors cyslt1r and cyslt2r, and gpr17 in brain of parkinson disease model mice. Zhejiang da xue xue bao. Yi xue ban= journal of zhejiang university. Med Sci 42:52–60

    Google Scholar 

  • Wu S, Zhu X, Jin Z, Tong X, Zhu L, Hong X, Zhu X, Liu P, Shen W (2015) The protective role of montelukast against intestinal ischemia-reperfusion injury in rats. Sci Rep 5(1):1–9

    Google Scholar 

  • Yu G-L, Wei E-Q, Zhang S-H, Xu H-M, Chu L-S, Zhang W-P, Zhang Q, Chen Z, Mei R-H, Zhao M-H (2004) Montelukast, a cysteinyl leukotriene receptor-1 antagonist, dose-and time-dependently protects against focal cerebral ischemia in mice. Pharmacology 73:31–40

    PubMed  Google Scholar 

  • Yu G-L, Wei E-Q, Wang M-L, Zhang W-P, Zhang S-H, Weng J-Q, Chu L-S, Fang S-H, Zhou Y, Chen Z (2005) Pranlukast, a cysteinyl leukotriene receptor-1 antagonist, protects against chronic ischemic brain injury and inhibits the glial scar formation in mice. Brain Res 1053:116–125

    CAS  PubMed  Google Scholar 

  • Yu S-Y, Zhang X-Y, Wang X-R, Xu D-M, Chen L, Zhang L-H, Fang S-H, Lu Y-B, Zhang W-P, Wei E-Q (2014) Cysteinyl leukotriene receptor 1 mediates ltd4-induced activation of mouse microglial cells in vitro. Acta Pharmacol Sin 35:33–40

    PubMed  Google Scholar 

  • Yu X-B, Dong R-R, Wang H, Lin J-R, An Y-Q, Du Y, Tang S-S, Hu M, Long Y, Sun H-B (2016) Knockdown of hippocampal cysteinyl leukotriene receptor 1 prevents depressive behavior and neuroinflammation induced by chronic mild stress in mice. Psychopharmacology 233:1739–1749

    CAS  PubMed  Google Scholar 

  • Zhang Y-J, Zhang L, Wang S-B, Shen H-H, Wei E-Q (2004) Montelukast modulates lung cyslt (1) receptor expression and eosinophilic inflammation in asthmatic mice. Acta Pharmacol Sin 25:1341–1346

    CAS  PubMed  Google Scholar 

  • Zhou C, Shi X, Huang H, Zhu Y, Wu Y (2014) Montelukast attenuates neuropathic pain through inhibiting p38 mitogen-activated protein kinase and nuclear factor-kappa b in a rat model of chronic constriction injury. Anesth Analg 118:1090–1096

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is a part of the Master’s thesis (Registration number: 67). All who assisted at the Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran, are gratefully acknowledged. The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

PK: investigation, acquisition, analysis and interpretation of data, and writing—original draft. NK: investigation, acquisition, and analysis of data. A-RD: conceptualization and supervision. MG–K: conceptualization and supervision. HS: conceptualization, methodology, supervision, and funding acquisition. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Hamed Shafaroodi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures in the present study were carried out in accordance with the NIH guide for the care and use of laboratory animals (National Institutes of Health Publication #85-23) and the institutional guidelines for animal care and use (Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS) (ethics approval code: IR.TUMS.MEDICINE.REC.1399.183).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabakhsh, P., Khoie, N., Dehpour, AR. et al. Montelukast suppresses the development of irritable bowel syndrome phenotype possibly through modulating NF-κB signaling in an experimental model. Inflammopharmacol 30, 313–325 (2022). https://doi.org/10.1007/s10787-021-00907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00907-7

Keywords

Navigation