Skip to main content

Advertisement

Log in

Anti-inflammatory effects of Chrysophyllum cainito fruit extract in lipopolysaccharide-stimulated mouse peritoneal macrophages

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

The present paper sought to investigate the in vitro and in vivo anti-inflammatory effects of the methanolic extract (ME), hexane–ethyl acetate fraction E (FE) found in Chrysophyllum cainito fruits (CCF), as well the lupeol acetate (LA) obtained from FE on lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. The macrophages were treated with ME, FE or LA at various concentrations and the viability of cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide method. Production of pro-inflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10) cytokines, as well as the nitric oxide (NO) and hydrogen peroxide (H2O2) levels was determined using macrophages treated with ME, FE or LA at various concentrations and stimulated with LPS as an in vitro model. Afterwards, we evaluated the anti-inflammatory effects in vivo using the TPA-induced ear edema and carrageenan-induced paw edema tests in mice and production of inflammatory mediators was estimated in serum samples. The results showed that the ME, FE and LA from fruits, FE and LA were able to trigger an inhibition in NO and H2O2 levels, as well as IL-1β, IL-6, and TNF-α released by macrophages in a concentration-dependent manner. LA from C. cainito fruits was found to significantly attenuate carrageenan-induced paw edema and TPA-induced ear edema. Therefore, the results suggest ME, FE and LA isolated from C. cainito fruits have anti-inflammatory effects on macrophages without affecting cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alves RE, Brito EA, Rufino MSM, Sampaio CG (2008) Antioxidant activity measurement in tropical fruits: a case study with acerola. Acta Hort 773:299–305

    Article  CAS  Google Scholar 

  • Anzanelo-Meira N, Rocha LW, da Silva GF, Martin-Quintal Z, Delle-Monache F, Cechinel-Filho V, Meira-Quintão NL (2016) Chrysophyllum cainito leaves are effective against pre-clinical chronic pain models: analysis of crude extract, fraction and isolated compounds in mice. J Ethnopharmacol 184:30–41

    Article  Google Scholar 

  • Arana-Argáez VE, Chan-Zapata I, Canul-Canche J, Fernández-Martín K, Martín-Quintal Z, Torres-Romero JC, Ramírez-Camacho MA (2017) Immunosuppresive effects of the methanolic extract of Chrysophyllum cainito leaves on macrophage functions. Afr J Tradit Complement Altern Med 14(1):179–186

    PubMed  Google Scholar 

  • Ashalatha K, Venkateswarlu Y, Moushumi Priya A, Lalitha P, Krishnaveni M, Jayachandran S (2010) Anti-inflammatory potential of Decalepis hamiltonii (Wight and Arn) as evidenced by downregulation of pro inflammatory cytokines—TNF-α and IL-2. J Ethnopharmacol 130:167–170

    Article  CAS  PubMed  Google Scholar 

  • Blain EJ, Ali AY, Duance VC (2010) Boswellia frereana (frankincense) suppresses cytokine-induced matrix metalloproteinase expression and production of pro-inflammatory molecules in articular cartilage. Phytother Res 24:905–912

    Article  PubMed  Google Scholar 

  • Borish LC, Steinke JW (2003) Cytokines and chemokines. J Allergy Clin Immunol 111:460–475

    Article  Google Scholar 

  • Calhoun W, Chang J, Carlson RP (1987) Effect of selected antiinflammatory agents and other drugs on zymosan, arachidonic acid, PAF and carrageenan induced paw edema in the mouse. Agents Actions 21(3–4):306–309

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Ching C, Wu TS, Wu CR, Hsieh WT, Tsai HY (2012) Balanophora spicata and lupeol acetate possess antinociceptive and anti-inflammatory activities in vivo and in vitro. Evid Based Complement Alternat Med 2012:1–10

    Google Scholar 

  • Chun KS, Cha HH, Shin JW, Na HK, Park KK, Chung WY, Surh YJ (2004) Nitric oxide induces expression of cyclooxygenase-2 in mouse skin through activation of NF-kappa β. Carcinogenesis 25(3):445–454

    Article  CAS  PubMed  Google Scholar 

  • Das A, Bin Nordin DB, Bhaumik A (2010) A brief review on Chrysophyllum cainito. J Pharmacogn Herb Formul 1:1–7

    Google Scholar 

  • Dinarello CA (2010) Anti-inflammatory agents: present and future. Cell 140(6):935–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte Moreira RR, Zeppone Carlos I, Vilegas W (2001) Release of intermediate reactive hydrogen peroxide by macrophage cells activated by natural products. Biol Pharm Bull 24(2):201–204

    Article  Google Scholar 

  • Dupuy OAL, Bonilla JAV, Murillo R, Taylor P, Abad MJ, González L, Juliao JA (2013) Efecto in vitro de los terpenos lupeol y casearina G sobre células sanguíneas y tumorales. Rev Med Chile 141:1150–1157

    Article  Google Scholar 

  • Duque GA, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5(491):1–12

    CAS  Google Scholar 

  • Fernández MA, De Las HB, García MA, Sáenz MT, Villar A (2001) New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. J Pharm Pharmacol 53:1533–1539

    Article  PubMed  Google Scholar 

  • Flannagan RS, Cosío G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366

    Article  CAS  Google Scholar 

  • Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286

    Article  CAS  PubMed  Google Scholar 

  • Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29(5):767–820

    Article  CAS  PubMed  Google Scholar 

  • Gómez M, Gil JF (2011) Topical anti-inflammatory activity of Calea prunifolia HBK (Asteraceae) in the TPA model of mouse ear inflammation. J Brazil Chem Soc 22(12):2391–2395

    Article  Google Scholar 

  • Gonzalez-Chavez MM, Alonso-Castro AJ, Zapata-Morales JR, Arana-Argaez VE, Torres-Romero JC, Medina-Rivera YE, Sanchez Mendoza E, Perez-Gutierrez S (2018) Anti-inflammatory and antinociceptive effects of tilifodiolide, isolated from Salvia tiliifolia Vahl (Lamiaceae). Drug Dev Res 79:165–172

    Article  CAS  PubMed  Google Scholar 

  • Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, Yoshimura A (2002) SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17:583–591

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi V, Mahdi AA, Ahmad MK, Agarwal SK, Srivastava AK (2014) Antidiabetic activity of lupeol and lupeol esteres in streptozotocin-induced diabetic rats. Bangladesh J Pharmacol 17(2):138–146

    Article  Google Scholar 

  • Lawrence T, Fong C (2010) The resolution of inflammation: anti-inflammatory roles for NF-κB. Int J Biochem Cell Biol 42(4):519–523

    Article  CAS  PubMed  Google Scholar 

  • Li AP, Xie BX, Wang S, Zhong QP (2008) Comparative antioxidant activities of Manilkara zapodilla, Chrysophyllum cainto and Pouteria sapota. Acta Horticulturae Sinica 35(2):175–180

    CAS  Google Scholar 

  • Li-Mei M, Xue-Wen Q, Ji-Heng H, Hai-Feng L, Qing-Hua X, Pei-Li B (2015) In vitro, ex vivo and in vivo anti-hypertensive activity of Chrysophyllum cainito L. extract. Int J Clin Exp Med 8(10):17912–17921

    Google Scholar 

  • Lucetti DL, Lucetti ECP, Bandeira MAM, Veras HNH, Silva AH, Leal LKAM, Viana GB (2010) Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel. J Inflamm 7(60):1–11

    Google Scholar 

  • Luo XD, Basile MJ, Kennelly EJ (2002) Polyphenolic antioxidants from the fruits of Chrysophyllum cainito L. (star apple). J Agr Food Chem 50:1379–1382

    Article  CAS  Google Scholar 

  • Meira NA, Klein LC Jr, Rocha LW, Martin Quintal Z, Delle Monache F, Cechinel Filho V, Meira Quintão NL (2014) Anti-inflammatory and anti-hypersensitive effects of the crude extract, fractions and triterpenes obtained from Chrysophyllum cainito leaves in mice. J Ethnopharmacol 151:975–983

    Article  PubMed  Google Scholar 

  • Moo-Huchin VM, Estrada-Mota I, Estrada-León R, Cuevas-Glory L, Ortiz-Vázquez E, Vargas y Vargas ML, Betancur-Ancona D, Sauri-Duch E (2014) Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chem 152:508–515

    Article  CAS  PubMed  Google Scholar 

  • Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • N’guessan K, Amoikon Kouakou E, Tiébré MS, Kadja B, Zirihi Guédé N (2009) Effect of aqueous extract of Chrysophyllum cainito leaves on the glycaemia of diabetic rabbits. Afr J Pharm Pharmacol 3(10):501–506

    Google Scholar 

  • Nagy G, Clark JM, Buzas EI, Gorman CL, Cope AP (2007) Nitric oxide, chronic inflammation and autoimmunity. Immunol Lett 111(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Omote K, Hazama K, Kawamata T, Kawamata M, Nakayaka Y, Toriyabe M, Namiki A (2001) Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res 912:171–175

    Article  CAS  PubMed  Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestry Database: a Tree Reference and Selection Guide Version 4.0. http://www.worldagroforestry.org/treedb2/speciesprofile.php?Spid=524

  • Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:1–19

    Article  Google Scholar 

  • Sabry OMM, Ismail M, El Sayed AM (2016) Bioactive cytotoxic agents and chemokine production inhibitors in LPS-induced RAW264.7 macrophage cell line from flowers of Crepis senecioides. J Nat Sci Res 6(14):9–21

    Google Scholar 

  • Salvemini D, Wang ZQ, Wyatt PS, Bourdon DM, Marino MH, Manning PT, Currie MG (1996) Nitric oxide: A key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol 118:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shailajan S, Gurjar D (2014) Pharmacognostic and phytochemical evaluation of Chrysophyllum cainito Linn. leaves. Int J Pharm Sci Rev Res 26(1):106–111

    Google Scholar 

  • Su YD, Su TR, Wen ZH, Hwang TL, Fang LS, Chen JJ, Wu YC, Sheu JH, Sung PJ (2015) Briarenolides K and L, new anti-inflammatory briarane diterpenoids from an octocoral Briareum sp. (Briareidae). Mar Drugs 13:1037–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suleria HAR, Addepalli R, Masci P, Gobe G, Osborne SA (2017) In vitro anti-inflammatory activities of blacklip abalone (Haliotis rubra) in RAW 2647 macrophages. Food Agr Immunol 28(4):711–724

    Article  CAS  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  Google Scholar 

  • Toffoli-Kadri MC, Carollo CA, Días Lourenço L, Felipe JL, Brandini Néspoli JH, Campos Wollf LG, de Siqueira JM (2014) In vivo and in vitro anti-inflammatory properties of Achyrocline alata (Kunth) DC. J Ethnopharmacol 153(2):461–468

    Article  CAS  PubMed  Google Scholar 

  • Toriyabe M, Omote K, Kawamata T, Namiki A (2004) Contribution of interaction between nitric oxide and cyclooxygenases to the production of prostaglandins in carrageenan-induced inflammation. Anesthesiology 101:983–990

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Consejo Nacional de Ciencia y Tecnologia” (CONACYT): “Fondo Sectorial de Investigación para la Educación” (CB-2013-01/221886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén M. Carballo.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

The present study was carried out in accordance with the principles and guidelines of the World Medical Association Statement on Animal Use in Biomedical Research and the Mexican Official Standard for Animal Care and Handing (NOM-062-ZOO-1999) and was approved by the ethics committee of the Agricultural and Biological Sciences Campus (CB-CCBA-M-2016-005) at the Autonomous University of Yucatán, Mexico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arana-Argáez, V.E., Mena-Rejón, G.J., Torres-Romero, J.C. et al. Anti-inflammatory effects of Chrysophyllum cainito fruit extract in lipopolysaccharide-stimulated mouse peritoneal macrophages. Inflammopharmacol 29, 513–524 (2021). https://doi.org/10.1007/s10787-021-00795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00795-x

Keywords

Navigation