Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease, which is characterized by a chronic fluctuating course and immune dysfunction, resulting in affecting the health and life quality of RA patients. Methotrexate (MTX), as the standard gold treatment of RA, has received more and more clinical applications and basic pharmacological research. In several observational studies, MTXR, and treatment responses in RA patients show that the ratio of MTXR and non- response is about 30%–50%, namely MTX resistance (MTXR). Extensive efforts have been made into the investigation of the mechanism and effective biomarkers in MTXR of RA. In this paper, we discuss the recent findings regarding the critical signaling pathways of MTXR in RA. Provide research targets and directions for a drug therapy that develop preventive strategies and effective treatments of MTXR.
Similar content being viewed by others
References
Ally MM, Hodkinson B, Meyer PW, Musenge E, Tintinger GR, Tikly M, Anderson R (2015) Circulating anti-citrullinated peptide antibodies, cytokines and genotype as biomarkers of response to disease-modifying antirheumatic drug therapy in early rheumatoid arthritis. BMC Musculoskelet Disord 16:130. https://doi.org/10.1186/s12891-015-0587-1
Association CR (2018) 2018 Chinese guideline for the diagnosis and treatment of rheumatoid arthritis. Chin J Intern Med 57:242–251
Banerjee D, Mayer-Kuckuk P, Capiaux G, Budak-Alpdogan T, Gorlick R, Bertino JR (2002) Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta 1587:164–173. https://doi.org/10.1016/s0925-4439(02)00079-0
Bobbio-Pallavicini F, Caporali R, Alpini C, Moratti R, Montecucco C (2007) Predictive value of antibodies to citrullinated peptides and rheumatoid factors in anti-TNF-alpha treated patients. Ann N Y Acad Sci 1109:287–295. https://doi.org/10.1196/annals.1398.034
Boerbooms AM, Kerstens PJ, van Loenhout JW, Mulder J, van de Putte LB (1995) Infections during low-dose methotrexate treatment in rheumatoid arthritis. Semin Arthritis Rheum 24:411–421. https://doi.org/10.1016/s0049-0172(95)80009-3
Braun J et al (2008) Comparison of the clinical efficacy and safety of subcutaneous versus oral administration of methotrexate in patients with active rheumatoid arthritis: results of a six-month, multicenter, randomized, double-blind, controlled, phase IV trial. Arthr Rheum 58:73–81. https://doi.org/10.1002/art.23144
Brown JM et al (2017) Detection and characterisation of bone destruction in murine rheumatoid arthritis using statistical shape models. Med Image Anal 40:30–43. https://doi.org/10.1016/j.media.2017.05.006
Bunni M, Doig MT, Donato H, Kesavan V, Priest DG (1988) Role of methylenetetrahydrofolate depletion in methotrexate-mediated intracellular thymidylate synthesis inhibition in cultured L1210 cells. Cancer Res 48:3398–3404
Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916. https://doi.org/10.1056/NEJM200103223441207
Cribbs AP et al (2015) Methotrexate restores regulatory T cell function through demethylation of the FoxP3 upstream enhancer in patients with rheumatoid arthritis. Arthritis Rheumatol 67:1182–1192. https://doi.org/10.1002/art.39031
Cronstein BN, Sitkovsky M (2017) Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 13:41–51. https://doi.org/10.1038/nrrheum.2016.178
Cronstein BN, Naime D, Ostad E (1993) The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 92:2675–2682. https://doi.org/10.1172/JCI116884
de Andres MC, Perez-Pampin E, Calaza M, Santaclara FJ, Ortea I, Gomez-Reino JJ, Gonzalez A (2015) Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Res Ther 17:233. https://doi.org/10.1186/s13075-015-0748-5
Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, Kremer J (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50:2766–2774. https://doi.org/10.1002/art.20460
Dervieux T, Wessels JA, van der Straaten T, Penrod N, Moore JH, Guchelaar HJ, Kremer JM (2009) Gene-gene interactions in folate and adenosine biosynthesis pathways affect methotrexate efficacy and tolerability in rheumatoid arthritis. Pharmacogenet Genom 19:935–944. https://doi.org/10.1097/FPC.0b013e32833315d1
Dong X, Gan Y, Ding L, Zeng F, Ding D (2019) Effect of jiawei fengshining on synovial cell apoptosis and TGF-beta1/Smad signaling pathway in rats with rheumatoid arthritis evid based complement. Alternat Med 2019:8614034. https://doi.org/10.1155/2019/8614034
Dulic S et al (2017) T-cell subsets in rheumatoid arthritis patients on long-term anti-TNF or IL-6 receptor blocker therapy. Mediat Inflamm 2017:6894374. https://doi.org/10.1155/2017/6894374
Ercan A et al (2010) Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum 62:2239–2248. https://doi.org/10.1002/art.27533
Felson DT (2016) Safety of nonsteroidal antiinflammatory drugs. N Engl J Med 375:2595–2596. https://doi.org/10.1056/NEJMe1614257
Foell D, Roth J (2004) Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum 50:3762–3771. https://doi.org/10.1002/art.20631
Gao M, Zheng J, Zheng C, Huang Z, Huang Q (2020) Theacrine alleviates chronic inflammation by enhancing TGF-beta-mediated shifts via TGF-beta/SMAD pathway in Freund’s incomplete adjuvant-induced rats. Biochem Biophys Res Commun 522:743–748. https://doi.org/10.1016/j.bbrc.2019.11.126
Gosselt HR, van Zelst BD, de Rotte M, Hazes JMW, de Jonge R, Heil SG (2019) Higher baseline global leukocyte DNA methylation is associated with MTX non-response in early RA patients. Arthritis Res Ther 21:157. https://doi.org/10.1186/s13075-019-1936-5
Grabar PB, Rojko S, Logar D, Dolzan V (2010) Genetic determinants of methotrexate treatment in rheumatoid arthritis patients: a study of polymorphisms in the adenosine pathway. Ann Rheum Dis 69:931–932. https://doi.org/10.1136/ard.2009.111567
Green PG, Basbaum AI, Helms C, Levine JD (1991) Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in the rat. Proc Natl Acad Sci USA 88:4162–4165. https://doi.org/10.1073/pnas.88.10.4162
Halilova KI, Brown EE, Morgan SL, Bridges SL Jr, Hwang MH, Arnett DK, Danila MI (2012) Markers of treatment response to methotrexate in rheumatoid arthritis: where do we stand? Int J Rheumatol 2012:978396. https://doi.org/10.1155/2012/978396
Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770. https://doi.org/10.1038/nrd2638
Herrath J et al (2011) The inflammatory milieu in the rheumatic joint reduces regulatory T-cell function. Eur J Immunol 41:2279–2290. https://doi.org/10.1002/eji.201041004
Ikemura K et al (2019) Concomitant febuxostat enhances methotrexate-induced hepatotoxicity by inhibiting breast cancer resistance protein. Sci Rep 9:20359. https://doi.org/10.1038/s41598-019-56900-2
Inoue K, Yuasa H (2014) Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet 29:12–19. https://doi.org/10.2133/dmpk.dmpk-13-rv-119
Jekic B et al (2013) Association of the TYMS 3G/3G genotype with poor response and GGH 354GG genotype with the bone marrow toxicity of the methotrexate in RA patients. Eur J Clin Pharmacol 69:377–383. https://doi.org/10.1007/s00228-012-1341-3
Kim YI, Logan JW, Mason JB, Roubenoff R (1996) DNA hypomethylation in inflammatory arthritis: reversal with methotrexate. J Lab Clin Med 128:165–172. https://doi.org/10.1016/s0022-2143(96)90008-6
Lampropoulos CE et al (2015) Adverse events and infections in patients with rheumatoid arthritis treated with conventional drugs or biologic agents: a real world study. Clin Exp Rheumatol 33:216–224
Leclerc GJ, Mou C, Leclerc GM, Mian AM, Barredo JC (2010) Histone deacetylase inhibitors induce FPGS mRNA expression and intracellular accumulation of long-chain methotrexate polyglutamates in childhood acute lymphoblastic leukemia: implications for combination therapy. Leukemia 24:552–562. https://doi.org/10.1038/leu.2009.282
Li H et al (2018) Inhibitors of dihydrofolate reductase as antitumor agents: design, synthesis and biological evaluation of a series of novel nonclassical 6-substituted pyrido[3,2-d]pyrimidines with a three- to five-carbon bridge. Bioorg Med Chem 26:2674–2685. https://doi.org/10.1016/j.bmc.2018.04.035
Liu YM, Chen JW, Chen LX, Xie X, Mao N (2016) Overexpression of P-glycoprotein on fibroblast-like synoviocytes in refractory rheumatoid arthritis patients: a potential mechanism for multidrug resistance in rheumatoid arthritis treatment. Genet Mol Res. https://doi.org/10.4238/gmr.15027927
Lubberts E (2015) Role of T lymphocytes in the development of rheumatoid arthritis. Implications for treatment. Curr Pharm Des 21:142–146. https://doi.org/10.2174/1381612820666140825122247
Ma D et al (2019) Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int Immunopharmacol 74:105687. https://doi.org/10.1016/j.intimp.2019.105687
Marotte H, Maslinski W, Miossec P (2005) Circulating tumour necrosis factor-alpha bioactivity in rheumatoid arthritis patients treated with infliximab: link to clinical response. Arthritis Res Ther 7:R149–155. https://doi.org/10.1186/ar1465
Marotte H, Arnaud B, Diasparra J, Zrioual S, Miossec P (2008) Association between the level of circulating bioactive tumor necrosis factor alpha and the tumor necrosis factor alpha gene polymorphism at -308 in patients with rheumatoid arthritis treated with a tumor necrosis factor alpha inhibitor. Arthritis Rheum 58:1258–1263. https://doi.org/10.1002/art.23430
Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754. https://doi.org/10.1093/emboj/19.8.1745
Michelsen B et al (2017) Do depression and anxiety reduce the likelihood of remission in rheumatoid arthritis and psoriatic arthritis? Data from the prospective multicentre NOR-DMARD study. Ann Rheum Dis 76:1906–1910. https://doi.org/10.1136/annrheumdis-2017-211284
Micsik T, Lorincz A, Gal J, Schwab R, Petak I (2015) MDR-1 and MRP-1 activity in peripheral blood leukocytes of rheumatoid arthritis patients. Diagn Pathol 10:216. https://doi.org/10.1186/s13000-015-0447-1
Montesinos MC, Desai A, Cronstein BN (2006) Suppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollate-induced peritonitis. Arthritis Res Ther 8:R53. https://doi.org/10.1186/ar1914
Montesinos MC, Takedachi M, Thompson LF, Wilder TF, Fernandez P, Cronstein BN (2007) The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5′-nucleotidase: findings in a study of ecto-5′-nucleotidase gene-deficient mice. Arthritis Rheum 56:1440–1445. https://doi.org/10.1002/art.22643
Mori S, Hirose J, Yonemura K (2010) Contribution of HLA-DRB1*04 alleles and anti-cyclic citrullinated antibodies to development of resistance to disease-modifying antirheumatic drugs in early rheumatoid arthritis. Clin Rheumatol 29:1357–1366. https://doi.org/10.1007/s10067-010-1454-y
Nesher G, Moore TL (1990) The in vitro effects of methotrexate on peripheral blood mononuclear cells. Modulation by methyl donors and spermidine. Arthritis Rheum 33:954–959. https://doi.org/10.1002/art.1780330706
Nesher G, Mates M, Zevin S (2003) Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum 48:571–572. https://doi.org/10.1002/art.10766
Odink K et al (1987) Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330:80–82. https://doi.org/10.1038/330080a0
Ostrowska M, Maslinski W, Prochorec-Sobieszek M, Nieciecki M, Sudol-Szopinska I (2018) Cartilage and bone damage in rheumatoid arthritis. Reumatologia 56:111–120. https://doi.org/10.5114/reum.2018.75523
Pachot A et al (2007) Increased tumor necrosis factor-alpha mRNA expression in whole blood from patients with rheumatoid arthritis: reduction after infliximab treatment does not predict response. J Rheumatol 34:2158–2161
Patro PS, Singh A, Misra R, Aggarwal A (2016) Myeloid-related protein 8/14 levels in rheumatoid arthritis: marker of disease activity and response to methotrexate. J Rheumatol 43:731–737. https://doi.org/10.3899/jrheum.150998
Peres RS et al (2015) Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis. Proc Natl Acad Sci USA 112:2509–2514. https://doi.org/10.1073/pnas.1424792112
Peres RS et al (2018) TGF-beta signalling defect is linked to low CD39 expression on regulatory T cells and methotrexate resistance in rheumatoid arthritis. J Autoimmun 90:49–58. https://doi.org/10.1016/j.jaut.2018.01.004
Perez-Guerrero EE et al (2018) Serum P-glycoprotein level: a potential biomarker of DMARD failure in patients with rheumatoid arthritis. Inflammopharmacology. https://doi.org/10.1007/s10787-018-0529-2
Ponchel F et al (2014) An immunological biomarker to predict MTX response in early RA. Ann Rheum Dis 73:2047–2053. https://doi.org/10.1136/annrheumdis-2013-203566
Priess M, Goddeke H, Groenhof G, Schafer LV (2018) Molecular mechanism of ATP hydrolysis in an ABC transporter. ACS Cent Sci 4:1334–1343. https://doi.org/10.1021/acscentsci.8b00369
Rayl EA, Moroson BA, Beardsley GP (1996) The human purH gene product, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase. Cloning, sequencing, expression, purification, kinetic analysis, and domain mapping. J Biol Chem 271:2225–2233. https://doi.org/10.1074/jbc.271.4.2225
Rose MG, Farrell MP, Schmitz JC (2002) Thymidylate synthase: a critical target for cancer chemotherapy. Clin Colorectal Cancer 1:220–229. https://doi.org/10.3816/CCC.2002.n.003
Saevarsdottir S et al (2011) Predictors of response to methotrexate in early DMARD naive rheumatoid arthritis: results from the initial open-label phase of the SWEFOT trial. Ann Rheum Dis 70:469–475. https://doi.org/10.1136/ard.2010.139212
Selga E, Oleaga C, Ramirez S, de Almagro MC, Noe V, Ciudad CJ (2009) Networking of differentially expressed genes in human cancer cells resistant to methotrexate. Genome Med 1:83. https://doi.org/10.1186/gm83
Sergeant JC et al. (2018) Prediction of primary non-response to methotrexate therapy using demographic, clinical and psychosocial variables: results from the UK Rheumatoid Arthritis Medication Study (RAMS) Arthritis Res Ther 20:147 https://doi.org/10.1186/s13075-018-1645-5
Sharma S et al (2009) Purine biosynthetic pathway genes and methotrexate response in rheumatoid arthritis patients among north Indians. Pharmacogenet Genomics 19:823–828. https://doi.org/10.1097/fpc.0b013e328331b53e
Shevach EM, Tran DQ, Davidson TS, Andersson J (2008) The critical contribution of TGF-beta to the induction of Foxp3 expression and regulatory T cell function. Eur J Immunol 38:915–917. https://doi.org/10.1002/eji.200738111
Singh JA et al (2016) 2015 American college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken) 68:1–25. https://doi.org/10.1002/acr.22783
Slauenwhite D, McAlpine SM, Hanly JG, Malik A, Haidl ID, Marshall JS, Issekutz TB (2020) Type 2 polarized t cell phenotype is associated with methotrexate non-response in patients with rheumatoid arthritis. Arthritis Rheumatol. https://doi.org/10.1002/art.41223
Smolen JS et al (2020) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2019-216655
Stamp LK, Hazlett J, Highton J, Hessian PA (2013) Expression of methotrexate transporters and metabolizing enzymes in rheumatoid synovial tissue. J Rheumatol 40:1519–1522. https://doi.org/10.3899/jrheum.130066
Stempak JM, Sohn KJ, Chiang EP, Shane B, Kim YI (2005) Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model. Carcinogenesis 26:981–990. https://doi.org/10.1093/carcin/bgi037
Sun W et al (2019) Correlations between the polymorphism of +869T/C in TGF-β1 and rheumatoid arthritis. J Musculoskelet Neuronal Interact 19:127–132
Tengstrand B, Ahlmen M, Hafstrom I (2004) The influence of sex on rheumatoid arthritis: a prospective study of onset and outcome after 2 years. J Rheumatol 31:214–222
Tsujimura S, Tanaka Y (2015) Disease control by regulation of P-glycoprotein on lymphocytes in patients with rheumatoid arthritis World. J Exp Med 5:225–231. https://doi.org/10.5493/wjem.v5.i4.225
van der Heijden JW et al (2009) Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide. Arthritis Rheum 60:669–677. https://doi.org/10.1002/art.24354
van Hamburg JP et al (2011) Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum 63:73–83. https://doi.org/10.1002/art.30093
van Vollenhoven RF et al (2009) Addition of infliximab compared with addition of sulfasalazine and hydroxychloroquine to methotrexate in patients with early rheumatoid arthritis (Swefot trial): 1-year results of a randomised trial. Lancet 374:459–466. https://doi.org/10.1016/s0140-6736(09)60944-2
Varani K, Massara A, Vincenzi F, Tosi A, Padovan M, Trotta F, Borea PA (2009) Normalization of A2A and A3 adenosine receptor up-regulation in rheumatoid arthritis patients by treatment with anti-tumor necrosis factor alpha but not methotrexate. Arthritis Rheum 60:2880–2891. https://doi.org/10.1002/art.24794
Varani K, Padovan M, Vincenzi F, Targa M, Trotta F, Govoni M, Borea PA (2011) A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther 13:R197. https://doi.org/10.1186/ar3527
Verburg RJ et al (2005) Outcome of intensive immunosuppression and autologous stem cell transplantation in patients with severe rheumatoid arthritis is associated with the composition of synovial T cell infiltration. Ann Rheum Dis 64:1397–1405. https://doi.org/10.1136/ard.2004.033332
Vilca I et al (2010) Predictors of poor response to methotrexate in polyarticular-course juvenile idiopathic arthritis: analysis of the PRINTO methotrexate trial. Ann Rheum Dis 69:1479–1483. https://doi.org/10.1136/ard.2009.120840
Visser K et al (2008) Pretreatment serum levels of anti-cyclic citrullinated peptide antibodies are associated with the response to methotrexate in recent-onset arthritis. Ann Rheum Dis 67:1194–1195. https://doi.org/10.1136/ard.2008.088070
Volk EL, Rohde K, Rhee M, McGuire JJ, Doyle LA, Ross DD, Schneider E (2000) Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Res 60:3514–3521
Wang YC, Chiang EP (2012) Low-dose methotrexate inhibits methionine S-adenosyltransferase in vitro and in vivo. Mol Med 18:423–432. https://doi.org/10.2119/molmed.2011.00048
Wang HX et al (2018) Dysregulated ICOS(+) proinflammatory and suppressive regulatory T cells in patients with rheumatoid arthritis. Exp Ther Med 16:3728–3734. https://doi.org/10.3892/etm.2018.6657
Wang J, Mao N, Xie X, Li S, Chen WJ (2019) High expression of multidrug resistance gene-1 can aggravate resistance to methotrexate in rheumatoid arthritis patients. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. Acta Acad Med Sin 41:595–600. https://doi.org/10.3881/j.issn.1000-503x.10927
Wehrens EJ et al (2011) Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood 118:3538–3548. https://doi.org/10.1182/blood-2010-12-328187
Wei W (2016) Soft regulation of inflammatory immune response. Chin Pharmacol Bull 32:297–303
Wojtuszkiewicz A et al (2015) Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia. J Hematol Oncol 8:61. https://doi.org/10.1186/s13045-015-0158-9
Wolf J, Stranzl T, Filipits M, Pohl G, Pirker R, Leeb B, Smolen JS (2005) Expression of resistance markers to methotrexate predicts clinical improvement in patients with rheumatoid arthritis. Ann Rheum Dis 64:564–568. https://doi.org/10.1136/ard.2003.014985
Wong LH, Flibotte S, Sinha S, Chiang J, Giaever G, Nislow C (2017) Genome-wide screen reveals sec21 mutants of saccharomyces cerevisiae are methotrexate-resistant. G3 (Bethesda) 7:1251–1257. https://doi.org/10.1534/g3.116.038117
Wu YJ, Wang C, Wei W (2018) The effects of DMARDs on the expression and function of P-gp, MRPs, BCRP in the treatment of autoimmune diseases. Biomed Pharmacother 105:870–878. https://doi.org/10.1016/j.biopha.2018.06.015
Yao X et al (2017) Over-expression of mdr1/P-gp is associated with methotrexate resistance in patients with rheumatoid arthritis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. Chin J Cell Mol Immunol 33:815–819
Youssef P, Roth J, Frosch M, Costello P, Fitzgerald O, Sorg C, Bresnihan B (1999) Expression of myeloid related proteins (MRP) 8 and 14 and the MRP8/14 heterodimer in rheumatoid arthritis synovial membrane. J Rheumatol 26:2523–2528
Yu J, Zhou P, Asenso J, Yang XD, Wang C, Wei W (2016) Advances in plant-based inhibitors of P-glycoprotein. J Enzyme Inhib Med Chem 31:867–881. https://doi.org/10.3109/14756366.2016.1149476
Yu MB, Firek A, Langridge WHR (2018) Predicting methotrexate resistance in rheumatoid arthritis patients. Inflammopharmacology 26:699–708. https://doi.org/10.1007/s10787-018-0459-z
Acknowledgments
The authors thank the Financial assistance was received with appreciation from the Key Project Foundation of Natural Science Research in Universities of Anhui Province in China (No. KJ2017A303); the Foundation of Anhui Medical University (No. 2018xkj065).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yu, J., Zhou, P. The advances of methotrexate resistance in rheumatoid arthritis. Inflammopharmacol 28, 1183–1193 (2020). https://doi.org/10.1007/s10787-020-00741-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10787-020-00741-3