Skip to main content
Log in

Analgesic activity and mechanism of action of a Beta vulgaris dye enriched in betalains in inflammatory models in mice

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Evidence demonstrates the pronounced anti-inflammatory activity of a beetroot (Beta vulgaris) dye enriched in betalains obtained using precipitation with ethanol. Herein, we expand upon our previous observations and demonstrate the analgesic and antioxidant effect of betalains. Betalains [10–1000 mg/kg; intraperitoneal route (i.p.)] diminished acetic acid- and PBQ-induced abdominal contortions, and the overt pain-like behaviour induced by complete Freund`s adjuvant (CFA) and formalin (intraplantar; i.pl.) injection. Moreover, betalains (100 mg/kg) administered by various routes [i.p. or subcutaneous (s.c.)] or as a post-treatment reduced carrageenin- or CFA-induced hyperalgesia. Mechanistically, betalains mitigated carrageenin-induced tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1β, superoxide anion levels, and lipid peroxidation. Betalains also stopped the depletion of reduced glutathione (GSH) levels and ferric reducing ability produced by carrageenin, as well as upregulated Nrf2 and Ho1 transcript expression in the plantar tissue of mice. Furthermore, betalains showed hydroxyl radical, 2,2′-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS+), and 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH•) scavenging ability and iron-chelating activity (bathophenantroline assay), and inhibited iron-independent and iron-dependent lipid peroxidation (LPO) in vitro. Finally, betalains-treated bone marrow-derived macrophages exhibited lower levels of cytokines (TNF-α and IL-1β), and superoxide anion levels and nuclear factor kappa B (NF-κB) activation following lipopolysaccharide (LPS) stimulation. Therefore, this betalain-rich dye extracted using a novel precipitation approach presents prominent analgesic effect in varied models of pain by mechanisms targeting cytokines and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alard D, Wray V, Grotjahna L, Strack HR (1985) Neobetanin: isolation and identification from Beta vulgaris. Phytochemistry 24:2383–2385

    CAS  Google Scholar 

  • Borghi SM, Carvalho TT, Staurengo-Ferrari L, Hohmann MS, Pinge-Filho P, Casagrande R, Verri WA Jr (2013) Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J Nat Prod 76:1141–1149

    CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    CAS  PubMed  Google Scholar 

  • Calil IL et al (2014) Lipopolysaccharide induces inflammatory hyperalgesia triggering a TLR4/MyD88-dependent cytokine cascade in the mice paw. PLoS ONE 9:e90013

    PubMed  PubMed Central  Google Scholar 

  • Casagrande R, Georgetti SR, Verri WA Jr, Borin MF, Lopez RF, Fonseca MJ (2007) In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional stability by antioxidant activity. Int J Pharm 328:183–190

    CAS  PubMed  Google Scholar 

  • Chen KL, Li L, Li CM, Wang YR, Yang FX, Kuang MQ, Wang GL (2019) SIRT7 regulates lipopolysaccharide-induced inflammatory injury by suppressing the NF-kappaB signaling pathway. Oxid Med Cell Longev 2019:3187972

    PubMed  PubMed Central  Google Scholar 

  • Chichorro JG, Lorenzetti BB, Zampronio AR (2004) Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats. Br J Pharmacol 141:1175–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha TM et al (2004) An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res 37:401–407

    CAS  PubMed  Google Scholar 

  • Cunha TM, Verri WA Jr, Silva JS, Poole S, Cunha FQ, Ferreira SH (2005) A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci USA 102:1755–1760

    CAS  PubMed  Google Scholar 

  • Cunha TM et al (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 83:824–832

    CAS  PubMed  Google Scholar 

  • Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4:161–174

    CAS  PubMed  Google Scholar 

  • Escribano J, Pedrño MA, Garcia-Carmona F, Muñoz R (1998) Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem Anal 9:124–127

    CAS  Google Scholar 

  • Fattori V et al (2017) Targeting IL-33/ST2 signaling: regulation of immune function and analgesia. Expert Opin Ther Targets 21:1141–1152

    CAS  PubMed  Google Scholar 

  • Fattori V, Pinho-Ribeiro FA, Staurengo-Ferrari L, Borghi SM, Rossaneis AC, Casagrande R, Verri WA Jr (2019) The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect. Br J Pharmacol 176:1728–1744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano J (2005) The neurobiology of nociceptive and anti-nociceptive systems. Pain physician 8:277–290

    PubMed  Google Scholar 

  • Gonçalves LC et al (2012) A comparative study of the purification of betanin. Food Chem 131:231–238

    Google Scholar 

  • Guedes RP et al (2006) Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res 31:603–609

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1987) The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    CAS  PubMed  Google Scholar 

  • Herbach KM, Stintzing FC, Carle R (2004) Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose] monitored by high-performance liquid chromatography–tandem mass spectrometric analyses. Eur Food Res Technol 219:377–385

    CAS  Google Scholar 

  • Hohmann MS et al (2013) 5-lipoxygenase deficiency reduces acetaminophen-induced hepatotoxicity and lethality. Biomed Res Int 2013:627046

    PubMed  PubMed Central  Google Scholar 

  • Ivan AL et al (2014) Pyrrolidine dithiocarbamate inhibits UVB-induced skin inflammation and oxidative stress in hairless mice and exhibits antioxidant activity in vitro. J Photochem Photobiol B 138:124–133

    CAS  PubMed  Google Scholar 

  • Katalinic V, Modun D, Music I, Boban M (2005) Gender differences in antioxidant capacity of rat tissues determined by 2,2′-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays. Comp Biochem Physiol C: Toxicol Pharmacol 140:47–52

    CAS  Google Scholar 

  • Krajka-Kuzniak V, Paluszczak J, Szaefer H, Baer-Dubowska W (2013) Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br J Nutr 110:2138–2149

    CAS  PubMed  Google Scholar 

  • Lee EJ, An D, Nguyen CT, Patil BS, Kim J, Yoo KS (2014) Betalain and betaine composition of greenhouse- or field-produced beetroot (Beta vulgaris L.) and inhibition of HepG2 cell proliferation. J Agric Food Chem 62:1324–1331

    CAS  PubMed  Google Scholar 

  • Loeser JD, Treede RD (2008) The Kyoto protocol of IASP basic pain terminology. Pain 137:473–477

    PubMed  Google Scholar 

  • Magro DA et al (2013) An interleukin-33/ST2 signaling deficiency reduces overt pain-like behaviors in mice. Braz J Med Biol Res 46:601–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez RM et al (2012) Tephrosia sinapou extract reduces inflammatory leukocyte recruitment in mice: effect on oxidative stress, nitric oxide and cytokine production. Revista Brasileira de Farmacognosia 22:587–597

    CAS  Google Scholar 

  • Martinez RM et al (2013) Tephrosia sinapou ethyl acetate extract inhibits inflammatory pain in mice: opioid receptor dependent inhibition of TNFalpha and IL-1beta production. Pharmac Biol 51:1262–1271

    CAS  Google Scholar 

  • Martinez RM et al (2015) Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Arch Pharmacal Res 38(4):494–504

    CAS  Google Scholar 

  • Medvedev AE, Kopydlowski KM, Vogel SN (2000) Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164:5564–5574

    CAS  PubMed  Google Scholar 

  • Mizokami SS et al (2012) Kaurenoic acid from Sphagneticola trilobata Inhibits Inflammatory Pain: effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod 75:896–904

    CAS  PubMed  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro SA, Serafim KG, Mizokami SS, Hohmann MS, Casagrande R, Verri WA Jr (2013) Analgesic activity of piracetam: effect on cytokine production and oxidative stress. Pharmacol Biochem Behav 105:183–192

    CAS  PubMed  Google Scholar 

  • Nilsson T (1973) The pigment content in beetroot with regard to cultivar, growth, development and growing conditions. Swed J Agric Res 3:187–200

    CAS  Google Scholar 

  • Parada CA, Tambeli CH, Cunha FQ, Ferreira SH (2001) The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience 102:937–944

    CAS  PubMed  Google Scholar 

  • Park HH et al (2013) Britanin suppresses LPS-induced nitric oxide, PGE2 and cytokine production via NF-kappaB and MAPK inactivation in RAW 264.7 cells. Int Immunopharmacol 15:296–302

    CAS  PubMed  Google Scholar 

  • Pavao-de-Souza GF et al (2012) Acetic acid- and phenyl-p-benzoquinone-induced overt pain-like behavior depends on spinal activation of MAP kinases, PI(3)K and microglia in mice. Pharmacol Biochem Behav 101:320–328

    CAS  PubMed  Google Scholar 

  • Pedreno MA, Escribano J (2000) Studying the oxidation and antiradical activity of betalain from beetroot. J Biol Ed 35:49–59

    Google Scholar 

  • Pinho-Ribeiro FA et al (2016a) Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-kappaB and oxidative stress. Inflammopharmacology 24:97–107

    CAS  PubMed  Google Scholar 

  • Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri WA Jr (2016b) Naringenin reduces inflammatory pain in mice. Neuropharmacology 105:508–519

    CAS  PubMed  Google Scholar 

  • Pinho-Ribeiro FA et al (2016c) The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-kappaB activation. J Nutr Biochem 33:8–14

    CAS  PubMed  Google Scholar 

  • Ravichandran K et al (2013) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int 50:670–675

    CAS  Google Scholar 

  • Reddy MK, Alexander-Lindo RL, Nair MG (2005) Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J Agric Food Chem 53:9268–9273

    CAS  PubMed  Google Scholar 

  • Ribeiro RA, Vale ML, Thomazzi SM, Paschoalato AB, Poole S, Ferreira SH, Cunha FQ (2000) Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 387:111–118

    CAS  PubMed  Google Scholar 

  • Rosland JH, Tjolsen A, Maehle B, Hole K (1990) The formalin test in mice: effect of formalin concentration. Pain 42:235–242

    CAS  PubMed  Google Scholar 

  • Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santa-Cecilia FV et al (2011) Antinociceptive and anti-inflammatory properties of 7-epiclusianone, a prenylated benzophenone from Garcinia brasiliensis. Eur J Pharmacol 670:280–285

    CAS  PubMed  Google Scholar 

  • Shen G, Jeong WS, Hu R, Kong AN (2005) Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Antioxid Redox Signal 7:1648–1663

    CAS  PubMed  Google Scholar 

  • Slatnar A, Stampar F, Veberic R, Jakopic J (2015) HPLC-MS(n) identification of betalain profile of different beetroot (Beta vulgaris L. ssp. vulgaris) parts and cultivars. J Food Sci 80:C1952–C1958

    PubMed  Google Scholar 

  • Staurengo-Ferrari L et al (2013) The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway. Pharmacol Biochem Behav 105:157–165

    CAS  PubMed  Google Scholar 

  • Staurengo-Ferrari L, Badaro-Garcia S, Hohmann MSN, Manchope MF, Zaninelli TH, Casagrande R, Verri WA Jr (2018a) Contribution of Nrf2 modulation to the mechanism of action of analgesic and anti-inflammatory drugs in pre-clinical and clinical stages. Front Pharmacol 9:1536

    CAS  PubMed  Google Scholar 

  • Staurengo-Ferrari L et al (2018b) Trans-chalcone attenuates pain and inflammation in experimental acute gout arthritis in mice. Front Pharmacol 9:1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stintzing FC et al (2005) Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem 53:442–451

    CAS  PubMed  Google Scholar 

  • Strack D, Engel U, Wray V (1987) Neobetanin: a new natural plant constituent. Phytochemistry 26:2399–2400

    CAS  Google Scholar 

  • Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    CAS  PubMed  Google Scholar 

  • Valerio DA et al (2007) Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: inhibition of cytokine production-dependent mechanism. Eur J Pharmacol 562:155–163

    CAS  PubMed  Google Scholar 

  • Valerio DA et al (2009) Quercetin reduces inflammatory pain: inhibition of oxidative stress and cytokine production. J Nat Prod 72:1975–1979

    CAS  PubMed  Google Scholar 

  • Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112:116–138

    CAS  PubMed  Google Scholar 

  • Verri WA Jr et al (2008) Role of IL-18 in overt pain-like behaviour in mice. Eur J Pharmacol 588:207–212

    CAS  PubMed  Google Scholar 

  • Vinson JA, Hao Y, Su X, Zubik L (1998) Phenol antioxidant quantity and quality in foods: vegetables. J Agric Food Chem 46:3630–3634

    CAS  Google Scholar 

  • Wang ZQ et al (2004) A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878

    CAS  PubMed  Google Scholar 

  • Watkins LR, Maier SF (2002) Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 82:981–1011

    CAS  PubMed  Google Scholar 

  • Yamacita-Borin FY et al (2015) Superoxide anion-induced pain and inflammation depends on TNFalpha/TNFR1 signaling in mice. Neurosci Lett 605:53–58

    CAS  PubMed  Google Scholar 

  • Zarpelon AC et al (2013) IL-33/ST2 signalling contributes to carrageenin-induced innate inflammation and inflammatory pain: role of cytokines, endothelin-1 and prostaglandin E2. Br J Pharmacol 169:90–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarpelon AC et al (2016) Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J 30:54–65

    CAS  PubMed  Google Scholar 

  • Zhang X, Bao L (2006) The development and modulation of nociceptive circuitry. Curr Opin Neurobiol 16:460–466

    CAS  PubMed  Google Scholar 

  • Žitňanová I, Ranostajová S, Sobotová H, Demelová D, Pecháň I, Ďuračková Z (2006) Antioxidative activity of selected fruits and vegetables. Biologia 61:279–284

    Google Scholar 

Download references

Acknowledgements

This work was supported by Brazilian grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível superior (CAPES, finance code 001), PPSUS Grant (agreement 041/2017, protocol 48.095), Programa de Apoio a Grupos de Excelência (PRONEX) grant supported by SETI/Araucária Foundation and MCTI/CNPq; and Paraná State Government (agreement 014/2017, protocol 46.843). The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Waldiceu A. Verri Jr. or Rubia Casagrande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, R.M., Hohmann, M.S., Longhi-Balbinot, D.T. et al. Analgesic activity and mechanism of action of a Beta vulgaris dye enriched in betalains in inflammatory models in mice. Inflammopharmacol 28, 1663–1675 (2020). https://doi.org/10.1007/s10787-020-00689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-020-00689-4

Keywords

Navigation