Skip to main content

Advertisement

Log in

Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease

  • Review Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease that is of high importance to the neuroscience world, yet the complex pathogenicity is not fully understood. Inflammation is usually observed in AD and could implicate both beneficial or detrimental effects depending on the severity of the disease. During initial AD pathology, microglia and astrocyte activation is beneficial since they are involved in amyloid-beta clearance. However, with the progression of the disease, activated microglia elicit detrimental effects by the overexpression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) bringing forth neurodegeneration in the surrounding brain regions. This results in decline in Aβ clearance by microglia; Aβ accumulation thus increases in the brain resulting in neuroinflammation. Thus, Aβ accumulation is the effect of increased release of pro-inflammatory molecules. Reactive astrocytes acquire gain of toxic function and exhibits neurotoxic effects with loss of neurotrophic functions. Astrocyte dysfunctioning results in increased release of cytokines and inflammatory mediators, neurodegeneration, decreased glutamate uptake, loss of neuronal synapses, and ultimately cognitive deficits in AD. We discuss the role of intracellular signaling pathways in the inflammatory responses produced by astrocytes and microglial activation, including the glycogen synthase kinase-3β, nuclear factor kappa B cascade, mitogen-activated protein kinase pathways and c-Jun N-terminal kinase. In this review, we describe the role of neuroinflammation in the chronicity of AD pathogenesis and an overview of the recent research towards the development of new therapies to treat this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe E, Casamenti F, Giovannelli L, Scali C, Pepeu G (1994) Administration of amyloid β-peptides into the medialtum of rats decreases acetylcholine release from hippocampus in vivo. Brain Res 636(1):162–164

    Article  CAS  PubMed  Google Scholar 

  • Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23(12):5088–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE (2000a) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000b) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksenov MY, Aksenova MV, Butterfield DA, Hensley K, Vigo-Pelfrey C, Carney JM (1996) Glutamine synthetase-induced enhancement of β-amyloid peptide Aβ (1–40) neurotoxicity accompanied by abrogation of fibril formation and Aβ fragmentation. J Neurochem 66(5):2050–2056

    Article  CAS  PubMed  Google Scholar 

  • Alvarez A, Opazo C, Alarcón R, Garrido J, Inestrosa NC (1997) Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils1. J Mol Biol 272(3):348–361

    Article  CAS  PubMed  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RA (2009) The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol 47(4):289–299

    CAS  PubMed  Google Scholar 

  • Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18(11):1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila-Muñoz E, Arias C (2014) When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev 1(18):29–40

    Article  CAS  Google Scholar 

  • Axelsen PH, Komatsu H, Murray IV (2011) Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology 26(1):54–69

    Article  CAS  PubMed  Google Scholar 

  • Baik SH, Kang S, Son SM, Mook-Jung I (2016) Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model. Glia 64(12):2274–2290

    Article  PubMed  Google Scholar 

  • Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, Guido T, Hoenow K, Hu K, Johnson-Wood K, Khan K (2003) Epitope and isotype specificities of antibodies to β-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci 100(4):2023–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  CAS  PubMed  Google Scholar 

  • Beggiato S, Borelli AC, Ferraro L, Tanganelli S, Antonelli T, Tomasini MC (2018) Palmitoylethanolamide blunts amyloid-β 42-induced astrocyte activation and improves neuronal survival in primary mouse cortical astrocyte-neuron co-cultures. J Alzheimers Dis:1–1 (Preprint)

  • Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, Makrelouf M, Belarbi S, Masmoudi AN, Tazir M, Touil-Boukoffa C (2014) IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res 34(11):839–847

    Article  CAS  PubMed  Google Scholar 

  • Bisht K, Sharma K, Tremblay MÈ (2018) Chronic stress as a risk factor for Alzheimer’s disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 9:9–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Boche D, Perry VH, Nicoll JA (2013) Activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39(1):3–18

    Article  CAS  PubMed  Google Scholar 

  • Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164(10):4991–4995

    Article  CAS  PubMed  Google Scholar 

  • Brecht WJ, Harris FM, Chang S, Tesseur I, Yu GQ, Xu Q, Fish JD, Wyss-Coray T, Buttini M, Mucke L, Mahley RW (2004) Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 24(10):2527–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitner JC, Baker LD, Montine TJ, Meinert CL, Lyketsos CG, Ashe KH et al (2011) Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement J Alzheimers Assoc 7(4):402–411

    Article  Google Scholar 

  • Brosseron F, Krauthausen M, Kummer M, Heneka MT (2014) Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol 50(2):534–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye-Bouchaud N, Mariani J (1995) Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci 92(7):3032–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B (2011) Caspase signalling controls microglia activation and neurotoxicity. Nature 472(7343):319

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Hensley K, Cole P, Subramaniam R, Aksenov M, Aksenova M, Bummer PM, Haley BE, Carney JM (1997) Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J Neurochem 68(6):2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12:719–732

    Article  PubMed  Google Scholar 

  • Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-l-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Chang CY, Choi DK, Lee DK, Hong YJ, Park EJ (2013) Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells. PLoS One 8(4):e60654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang K, Koo EH (2014) Emerging therapeutics for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 6(54):381–405

    Article  CAS  Google Scholar 

  • Claycomb KI, Johnson KM, Winokur PN, Sacino AV, Crocker SJ (2013) Astrocyte regulation of CNS inflammation and remyelination. Brain Sci 3(3):1109–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornejo F, Vruwink M, Metz C, Muñoz P, Salgado N, Poblete J, Andrés ME, Eugenín J, von Bernhardi R (2018) Scavenger receptor-A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer’s disease pathophysiology. Brain Behav Immun 1(69):336–350

    Article  CAS  Google Scholar 

  • Cunningham C, Campion S, Teeling J, Felton L, Perry VH (2007) The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I: C). Brain Behav Immun 21(4):490–502

    Article  CAS  PubMed  Google Scholar 

  • Czeh M, Gressens P, Kaindl AM (2011) The yin and yang of microglia. Dev Neurosci 33(3–4):199–209

    Article  CAS  PubMed  Google Scholar 

  • Dal Prà I, Chiarini A, Armato U (2015) Antagonizing amyloid-β/calcium-sensing receptor signaling in human astrocytes and neurons: a key to halt Alzheimer’s disease progression? Neural Regen Res 10(2):213

    Article  CAS  Google Scholar 

  • Dockens R, Wang JS, Castaneda L, Sverdlov O, Huang SP, Slemmon R, Gu H, Wong O, Li H, Berman RM, Smith C (2012) A placebo-controlled, multiple ascending dose study to evaluate the safety, pharmacokinetics and pharmacodynamics of avagacestat (BMS-708163) in healthy young and elderly subjects. Clin Pharmacokinet 51(10):681–693

    Article  CAS  PubMed  Google Scholar 

  • Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321

    Article  CAS  PubMed  Google Scholar 

  • Dorfman VB, Pasquini L, Riudavets M, López-Costa JJ, Villegas A, Troncoso JC, Lopera F, Castaño EM, Morelli L (2010) Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer’s disease. Neurobiol Aging 31(10):1743–1757

    Article  CAS  PubMed  Google Scholar 

  • Duthey B (2013) Background paper 6.11: Alzheimer disease and other dementias. Public Health Approach Innovat 20:1–74

    Google Scholar 

  • Falcão AS, Silva RF, Pancadas S, Fernandes A, Brito MA, Brites D (2007) Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J Neurosci Res 85(6):1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Farlow MR, Brosch JR (2013) Immunotherapy for Alzheimer’s disease. Neurol Clin 31(3):869–878

    Article  PubMed  Google Scholar 

  • Fayuk D, Yakel JL (2005) Ca2 + permeability of nicotinic acetylcholine receptors in rat hippocampal CA1 interneurones. The Journal of physiology. 566(3):759–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11(6):600–607

    Article  PubMed  Google Scholar 

  • Folch J, Petrov D, Ettcheto M, Abad S, Sánchez-López E, García ML, Olloquequi J, Beas-Zarate C, Auladell C, Camins A (2016) Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast. 2016:8501693. https://doi.org/10.1155/2016/8501693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105

    Article  CAS  PubMed  Google Scholar 

  • Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, Farfara D, Kingery ND, Weiner HL, El Khoury J (2013) Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 25(4):2030

    Article  CAS  Google Scholar 

  • Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM (2012) Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 32(46):16129–16140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011) Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2(6):e167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garwood C, Faizullabhoy A, Wharton SB, Ince PG, Heath PR, Shaw PJ, Baxter L, Gelsthorpe C, Forster G, Matthews FE, Brayne C (2013) Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 39(7):788–799

    Article  CAS  PubMed  Google Scholar 

  • Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF (2006) Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 81(1):47–63

    Article  PubMed  Google Scholar 

  • Godyń J, Jończyk J, Panek D, Malawska B (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68(1):127–138

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Nicola D, Perry VH (2015) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neurosci 21(2):169–184

    CAS  Google Scholar 

  • Grienberger C, Rochefort NL, Adelsberger H, Henning HA, Hill DN, Reichwald J, Staufenbiel M, Konnerth A (2012) Stagedline of neuronal function in vivo in an animal model of Alzheimer’s disease. Nat Commun 10(3):774

    Article  CAS  Google Scholar 

  • Griffin WS, Stanley LC, Ling CH, White L, MacLeod V, Perrot LJ, White C, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in down syndrome and Alzheimer disease. Proc Natl Acad Sci 86(19):7611–7615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54(2):276–281

    Article  CAS  PubMed  Google Scholar 

  • Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’in disease progression. Brain Pathol 8(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Griffin WS, Liu L, Li Y, Mrak RE, Barger SW (2006) Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflamm 3(1):5

    Article  CAS  Google Scholar 

  • Grolla AA, Fakhfouri G, Balzaretti G, Marcello E, Gardoni F, Canonico PL, DiLuca M, Genazzani AA, Lim D (2013a) Aβ leads to Ca2 + signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 34(2):511–522

    Article  CAS  PubMed  Google Scholar 

  • Grolla AA, Sim JA, Lim D, Rodriguez JJ, Genazzani AA, Verkhratsky A (2013b) Amyloid-β and Alzheimer’s disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis 4(5):e623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampel H, Ewers M, Burger K, Annas P, Mortberg A, Bogstedt A, Frolich L, Schroder J, Schonknecht P, Riepe MW, Kraft I (2009) Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 70(6):922

    Article  CAS  PubMed  Google Scholar 

  • Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS (2017) Recent progress in Alzheimer’s disease research, part 3: diagnosis and treatment. J Alzheimers Dis 57(3):645–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184

    Article  CAS  PubMed  Google Scholar 

  • Hashioka S, Klegeris A, McGeer PL (2012) Inhibition of human astrocyte and microglia neurotoxicity by calcium channel blockers. Neuropharmacology 63(4):685–691

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57(4):417–428

    Article  CAS  PubMed  Google Scholar 

  • Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28(33):8354–8360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JM, Lukiw WJ (2015) Microbial-generated amyloids and Alzheimer’s disease (AD). Front Aging Neurosci 10(7):9

    Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E (2008) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. The Lancet. 372(9634):216–223

    Article  CAS  Google Scholar 

  • Hong HS, Hwang EM, Sim HJ, Cho HJ, Boo JH, Oh SS, Kim SU, Mook-Jung I (2003) Interferon γ stimulates β-secretase expression and sAPPβ production in astrocytes. Biochem Biophys Res Commun 307(4):922–927

    Article  CAS  PubMed  Google Scholar 

  • Hoozemans JJ, Veerhuis R, Rozemuller JM, Eikelenboom P (2006) Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int J Dev Neurosci 24(2–3):157–165

    Article  CAS  PubMed  Google Scholar 

  • Huang Y (2010) Aβ-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer’s disease. Trends Mol Med 16(6):287–294

    Article  CAS  PubMed  Google Scholar 

  • Jaturapatporn D, Isaac MGEKN, McCleery J, Tabet N (2012) Aspirin steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database of Syst Rev. https://doi.org/10.1002/14651858.CD006378.pub2

    Article  Google Scholar 

  • Jay TR, Von Saucken VE, Landreth GE (2017) TREM2 in neurodegenerative diseases. Mol Neurodegen 12(1):56

    Article  CAS  Google Scholar 

  • Jazvinšćak JM, Hof PR, Šimić G (2015) Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxid Med Cell longev 2015:346783

    Google Scholar 

  • Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28(45):11650–11661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16(11):1210

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29:427–441

    PubMed  PubMed Central  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011a) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discovery 10(9):698

    Article  CAS  PubMed  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011b) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Ali T, Kim MW, Jo MH, Chung JI, Kim MO (2018) Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol Neurobiol 19:1–7

    CAS  Google Scholar 

  • Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Lee SJ, Masliah E, Hwang D, Lee HJ, Lee SJ (2013) Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 5(4):1562

    Article  CAS  Google Scholar 

  • Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol 187(12):6539–6549

    Article  CAS  PubMed  Google Scholar 

  • Koistinaho M, Lin S, Wu XI, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat Med 10(7):719

    Article  CAS  PubMed  Google Scholar 

  • Korvatska O, Leverenz JB, Jayadev S, McMillan P, Kurtz I, Guo X, Rumbaugh M, Matsushita M, Girirajan S, Dorschner MO, Kiianitsa K (2015) R47H variant of TREM2 associated with Alzheimer disease in a large late-onset family: clinical, genetic, and neuropathological study. JAMA Neurol 72(8):920–927

    Article  PubMed  PubMed Central  Google Scholar 

  • Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M, Pfister S, Schwerdel C, Riether C (2012) Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflamm 9(1):1

    Article  CAS  Google Scholar 

  • Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Seghal N, Padi SV, Naidu PS (2006a) Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicine-induced dysfunction and oxidative stress in rats. Eur J Pharmacol 551(1–3):58–66

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Seghal N, Padi SV, Naidu PS (2006b) Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicine-induced dysfunction and oxidative stress in rats. Eur J Pharmacol 551(1–3):58–66

    Article  CAS  PubMed  Google Scholar 

  • Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape HC, König S, Roeber S, Jessen F (2011) Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71(5):833–844

    Article  CAS  PubMed  Google Scholar 

  • LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862

    Article  CAS  PubMed  Google Scholar 

  • LaFerla FM, Oddo S (2005) Alzheimer’s disease: Aβ, tau and synaptic dysfunction. Trends Mol Med 11(4):170–176

    Article  CAS  PubMed  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Arch Eur J Physiol 460(2):525–542

    Article  CAS  Google Scholar 

  • Le Prince G, Delaere P, Fages C, Lefrançois T, Touret M, Salanon M, Tardy M (1995) Glutamine synthetase (GS) expression is reduced in senile dementia of the Alzheimer type. Neurochem Res 20(7):859–862

    Article  PubMed  Google Scholar 

  • Lee YJ, Choi DY, Choi IS, Kim KH, Kim YH, Kim HM, Lee K, Cho WG, Jung JK, Han SB, Han JY (2012) Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflamm 9(1):35

    CAS  Google Scholar 

  • Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011) Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31(18):6627–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim D, Iyer A, Ronco V, Grolla AA, Canonico PL, Aronica E, Genazzani AA (2013) Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia. 61(7):1134–1145

    Article  PubMed  Google Scholar 

  • Linnartz B, Wang Y, Neumann H (2010) Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimer’s Dis. https://doi.org/10.4061/2010/587463

    Article  Google Scholar 

  • Liu B, Wang K, Gao HM, Mandavilli B, Wang JY, Hong JS (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 77(1):182–189

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Cui G, Zhu M, Kang X, Guo H (2014) Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors. Int J Clin Exp Pathol 7(12):8342

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Deng Y, Gao J, Liu Y, Shi J, Gong Q (2015) Sodium hydrosulfide attenuates beta-amyloid-induced cognitive deficits and neuroinflammation via modulation of MAPK/NF-κB pathway in rats. Curr Alzheimer Res 12(7):673–683

    Article  CAS  PubMed  Google Scholar 

  • López-González I, Schlüter A, Aso E, Garcia-Esparcia P, Ansoleaga B, Llorens F, Carmona M, Moreno J, Fuso A, Portero-Otin M, Pamplona R (2015) Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 74(4):319–344

    Article  CAS  PubMed  Google Scholar 

  • Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64(1):110–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukiw WJ, Bazan NG (2000) Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem Res 25(9–10):1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y, Cai F, Woodgett J, Song W (2012) Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123(1):224–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Hansen L, Alford M, Deteresa R, Mallory M (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40(5):759–766

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen C, Brazhe A, Thomsen K, Lauritzen M (2013) Spontaneous calcium waves in Bergman glia increase with age and hypoxia and reduce tissue oxygen. J Cereb Blood Flow Metab 33(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • McGeer EG, McGeer PL (1997) Inflammatory cytokines in the CNS. CNS Drugs 7(3):214–228

    Article  Google Scholar 

  • McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126(4):479–497

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1–2):195–200

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease. A review of 17 epidemiologic studies. Neurology 47(2):425–432

    Article  CAS  PubMed  Google Scholar 

  • Melis V, Magbagbeolu M, Rickard JE, Horsley D, Davidson K, Harrington KA, Goatman K, Goatman EA, Deiana S, Close SP, Zabke C (2015) Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models. Behav Pharmacol 26(4):353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menting KW, Claassen JA (2014) β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer’s disease. Front Aging Neurosci 21(6):165

    Google Scholar 

  • Meraz RIOSMA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernández J, Campos-Peña V (2013) Inflammatory process in Alzheimer’s disease. Front Integr Neurosci 13(7):59

    Google Scholar 

  • Morris GP, Clark IA, Vissel B (2014) Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun 2(1):135

    PubMed  PubMed Central  Google Scholar 

  • Mouri A, Zou LB, Iwata N, Saido TC, Wang D, Wang MW, Noda Y, Nabeshima T (2006) Inhibition of neprilysin by thiorphan (icv) causes an accumulation of amyloid β and impairment of learning and memory. Behav Brain Res 168(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY (2003) Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 971(2):197–209

    Article  CAS  PubMed  Google Scholar 

  • Pannasch U, Rouach N (2013) Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci 36(7):405–417

    Article  CAS  PubMed  Google Scholar 

  • Parajuli B, Sonobe Y, Kawanokuchi J, Doi Y, Noda M, Takeuchi H, Mizuno T, Suzumura A (2012) GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J Neuroinflamm 9(1):268

    Article  CAS  Google Scholar 

  • Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M (2012) Glial cells in (patho) physiology. J Neurochem 121(1):4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278(15):13309–13317

    Article  CAS  PubMed  Google Scholar 

  • Paula-Lima AC, Brito-Moreira J, Ferreira ST (2013) Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J Neurochem 126(2):191–202

    Article  CAS  PubMed  Google Scholar 

  • Pihlaja R, Koistinaho J, Kauppinen R, Sandholm J, Tanila H, Koistinaho M (2011) Multiple cellular and molecular mechanisms are involved in human Aβ clearance by transplanted adult astrocytes. Glia 59(11):1643–1657

    Article  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137

    Article  PubMed  PubMed Central  Google Scholar 

  • Riera J, Hatanaka R, Uchida T, Ozaki T, Kawashima R (2011) Quantifying the uncertainty of spontaneous Ca 2 + oscillations in astrocytes: particulars of Alzheimer’s disease. Biophys J 101(3):554–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, Mathis CA, Blennow K, Barakos J, Okello AA, de LIano SR (2010) 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. The Lancet Neurol 9(4):363–372

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16(3):378

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Perez AI, Borrajo A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL (2015) Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia 63(3):466–482

    Article  PubMed  Google Scholar 

  • Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW et al (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43(8):1609–1611

    Article  CAS  PubMed  Google Scholar 

  • Rossi D (2015) Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 1(130):86–120

    Article  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci World J 2012:756357. https://doi.org/10.1100/2012/756357

    Article  CAS  Google Scholar 

  • Rudy CC, Hunsberger HC, Weitzner DS, Reed MN (2015) The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer’s disease. Aging Dis 6(2):131

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz A, Dols-Icardo O, Bullido MJ, Pastor P, Rodríguez-Rodríguez E, de Munain AL, de Pancorbo MM, Pérez-Tur J, Álvarez V, Antonell A, López-Arrieta J (2014) Assessing the role of the TREM2 p. R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35(2):444

    Article  CAS  PubMed  Google Scholar 

  • Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M, Sabbagh M, Honig LS, Doody R, Van Dyck CH, Mulnard R (2009) A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73(24):2061–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee AC, Alvarez VE, Lee NC, Hall GF (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287(6):3842–3849

    Article  CAS  PubMed  Google Scholar 

  • Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, Van Leuven F, Heneka MT (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. J Neurosci 23(30):9796–9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, Evert BO, Dumitrescu-Ozimek L, Thal DR, Landreth G, Walter J (2006) Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc Natl Acad Sci 103(2):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scuderi C, Stecca C, Iacomino A, Steardo L (2013a) Role of astrocytes in major neurological disorders: the evidence and implications. IUBMB Life 65(12):957–961

    Article  CAS  PubMed  Google Scholar 

  • Scuderi C, Stecca C, Iacomino A, Steardo L (2013b) Role of astrocytes in major neurological disorders: the evidence and implications. IUBMB Life 65(12):957–961

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Mielke ML, Gómez-Isla T, Betensky RA, Growdon JH, Frosch MP, Hyman BT (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol 179(3):1373–1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano-Pozo A, Muzikansky A, Gómez-Isla T, Growdon JH, Betensky RA, Frosch MP, Hyman BT (2013) Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 72(6):462–471

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava AN, Kowalewski JM, Renner M, Bousset L, Koulakoff A, Melki R, Giaume C, Triller A (2013) β-amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. Glia 61(10):1673–1686

    Article  PubMed  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122(3):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique H, Hynan LS, Weiner MF (2009) Effect of a serotonin reuptake inhibitor on irritability, apathy and psychotic symptoms in patients with Alzheimer’s disease. J Clin Psychiatry 70(6):915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, De Silva R, Di Giovanni G, Wischik C (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, Campbell T, Druyeh R, Mahoney CJ, Rohrer JD, Kenny J (2014) R47H TREM2 variant increases risk of typical early-onset Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimers Dement 10(6):602–608

    Article  PubMed  Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci 88(23):10540–10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  • Stack C, Jainuddin S, Elipenahli C, Gerges M, Starkova N, Starkov AA, Jové M, Portero-Otin M, Launay N, Pujol A, Kaidery NA (2014) Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum Mol Genet 23(14):3716–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiat 68(10):930–941

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Ü, Kutlu NP (1991) The distribution of paw preference in right-, left-, and mixed pawed male and female cats: the role of a female right-shift factor in handedness. Int J Neurosci 59(4):219–229

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski E, Andreasen N, Tarkowski A, Blennow K (2003) Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74(9):1200–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong G, Castaneda L, Wang JS, Sverdlov O, Huang SP, Slemmon R, Gu H, Wong O, Li H, Berman RM, Smith C (2012) Effects of single doses of avagacestat (BMS-708163) on cerebrospinal fluid Aβ levels in healthy young men. Clinical Drug Invest 32(11):761–769

    Article  CAS  Google Scholar 

  • Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37(2):289–305

    Article  CAS  PubMed  Google Scholar 

  • Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291(5504):657–661

    Article  CAS  PubMed  Google Scholar 

  • Van den Kommer TN, Dik MG, Comijs HC, Jonker C, Deeg DJ (2010) Homocysteine and inflammation: predictors of cognitiveline in older persons? Neurobiol Aging 31(10):1700–1709

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7(4):399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vodovotz Y, Lucia MS, Flanders KC, Chesler L, Xie QW, Smith TW et al (1996) Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J Exp Med 184:1425–1433. https://doi.org/10.1084/jem.184.4.1425

    Article  CAS  PubMed  Google Scholar 

  • Vollmar P, Kullmann JS, Thilo B, Claussen MC, Rothhammer V, Jacobi H, Sellner J, Nessler S, Korn T, Hemmer B (2010) Active immunization with amyloid-β 1–42 impairs memory performance through TLR2/4-dependent activation of the innate immune system. J Immunol 13:1001765

    Google Scholar 

  • Wan Y, Xu J, Meng F, Bao Y, Ge Y, Lobo N, Vizcaychipi MP, Zhang D, Gentleman SM, Maze M, Ma D (2010) Cognitiveline following major surgery is associated with gliosis, β-amyloid accumulation, and τ phosphorylation in old mice. Crit Care Med 38(11):2190–2198

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4) potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287(25):21384–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Nie X, Zhang Y, Li T, Mao J, Liu X, Gu Y, Shi J, Xiao J, Wan C, Wu Q (2015) Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure. Toxicol Appl Pharmacol 288(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Trocmé-Thibierge C, Stucky A, Shah SM, Kvasic J, Khan A, Morain P, Guignot I, Bouguen E, Deschet K, Pueyo M (2017) Increased Aβ 42-α7-like nicotinic acetylcholine receptor complex level in lymphocytes is associated with apolipoprotein E4-driven Alzheimer’s disease pathogenesis. Alzheimers Res Ther 9(1):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 23(5):88

    Google Scholar 

  • Wegiel J, Wang KC, Tarnawski M, Lach B (2000) Microglial cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plaque degradation. Acta Neuropathol 100(4):356–364

    Article  CAS  PubMed  Google Scholar 

  • Wilcock GK, Gauthier S, Frisoni GB, Jia J, Hardlund JH, Moebius HJ, Bentham P, Kook KA, Schelter BO, Wischik DJ, Davis CS (2018) Potential of low dose leuco-methylthioninium bis (hydromethanesulphonate)(LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial. J Alzheimer’s Dis, pp 1–24 (Preprint)

  • Willard B, Hauss-Wegrzyniak B, Wenk GL (1999) Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats. Neuroscience 88(1):193–200

    Article  CAS  PubMed  Google Scholar 

  • Willis M, Kaufmann WA, Wietzorrek G, Hutter-Paier B, Moosmang S, Humpel C, Hofmann F, Windisch M, Günther Knaus H, Marksteiner J (2010) L-type calcium channel Ca V 1.2 in transgenic mice overexpressing human AβPP751 with the London (V717I) and Swedish (K670 M/N671L) mutations. J Alzheimers Dis 20(4):1167–1180

    Article  CAS  PubMed  Google Scholar 

  • Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA (2012) The natural history of cognitiveline in Alzheimer’s disease. Psychol Aging 27(4):1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, Blennow K, Lundmark J, Staufenbiel M, Orgogozo JM (2012) Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11(7):597–604

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12(9):1005

    CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2(1):a006346

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia M, Qin S, Wu L, Mackay CR, Hyman BT (1998) Immunohistochemical study of the β-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am J Pathol 153(1):31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell longev 25:2013

    Google Scholar 

  • Zhao H, Wang SL, Qian L, Jin JL, Li H, Xu Y, Zhu XL (2013) Diammonium glycyrrhizinate attenuates Aβ1–42-induced neuroinflammation and regulates MAPK and NF-κB pathways in vitro and in vivo. CNS Neurosci Ther 19(2):117–124

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Dua P, Lukiw WJ (2015) Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer’s disease (AD). Journal of Alzheimer’s disease & Parkinsonism. 5(1):177

    CAS  Google Scholar 

  • Zhao Y, Jaber V, Lukiw WJ (2017) Secretory products of the human gi tract microbiome and their potential impact on Alzheimer’s disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol 11(7):318

    Article  CAS  Google Scholar 

  • Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-β peptide-induced mitochondrial dysfunction. J Neurosci 26(43):11111–11119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Wang ZG, Ding J, Liu N, Wang DM, Ding LC, Yang C (2014) Chronic lipopolysaccharide exposure induces cognitive dysfunction without affecting BDNF expression in the rat hippocampus. Exp Ther Med 7(3):750–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Wang J, Zhang Y, He J, Kong J, Wang JF, Li XM (2017) The role of neuroinflammation and amyloid in cognitive impairment in an APP/PS 1 transgenic mouse model of Alzheimer’s disease. CNS Neurosci Ther 23(4):310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou LB, Mouri A, Iwata N, Saido TC, Wang D, Wang MW, Mizoguchi H, Noda Y, Nabeshima T (2006) Inhibition of neprilysin by infusion of thiorphan into the hippocampus causes an accumulation of amyloid β and impairment of learning and memory. J Pharmacol Exp Ther 317(1):334–340

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Wang YX, Dou FF, Lü HZ, Ma ZW, Lu PH, Xu XM (2010) Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem Int 56(4):577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Science and Engineering Board (SERB), Department of Science and Technology, Govt. of India, New Delhi, for providing financial assistance under Fast Track Scheme (DST: SB/YS/LS-111/2013) to Dr. Rahul Deshmukh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Deshmukh.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Sharma, V. & Deshmukh, R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacol 27, 663–677 (2019). https://doi.org/10.1007/s10787-019-00580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-019-00580-x

Keywords

Navigation