Skip to main content
Log in

Antinociceptive effect of flavonol and a few structurally related dimethoxy flavonols in mice

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Previous reports suggest flavonoids as potent analgesic compounds. Based on these observations, the present study investigated the antinociceptive action of flavonol, 3′, 4′-dimethoxy flavonol, 6, 3′-dimethoxy flavonol, 7, 2′-dimethoxy flavonol, and 7, 3′-dimethoxy flavonol and the possible mechanisms involved in these effects. The antinociceptive effect of the investigated compounds in doses of 25, 50, 100, and 200 mg/kg was evaluated in male Swiss albino mice using the acetic acid test, formalin-induced nociception, and hot water tail immersion test. The role of opioid, tryptaminergic, adrenergic, dopaminergic, GABAergic, and K+ATP channels in producing the antinociceptive effect was also studied using appropriate interacting agents. Treatment with flavonol and dimethoxy flavonols resulted in a significant reduction in the number of abdominal constrictions in the acetic acid test, a significant inhibition of the paw-licking/biting response time in both the phases of formalin nociception and also a significant increase in mean reaction time in the hot water tail immersion test. These observations revealed the antinociceptive effect of dimethoxy flavonols. The role of opioid, serotonergic (5HT3), and dopaminergic system was identified in the antinociceptive effect of flavonol and all dimethoxy derivatives investigated. In addition, the role of GABAergic, K+ATP channel, and α-2 adrenergic mechanisms were also observed in the antinociceptive action of some of the investigated compounds. The present study identified the antinociceptive effect of flavonol and dimethoxy flavonols in mice acting through different neuronal pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed F, Hossain MH, Rahman AA, Shahid IZ (2006) Antinociceptive and sedative effects of the bark of Cereberaodollam Gaertn. Orient Pharm Exp Med 6:344–348

    Article  Google Scholar 

  • Alves DP, Tatsuo MA, Leite R, Duarte ID (2004) Diclofenac-induced peripheral antinociception is associated with ATP-sensitive K+ channels activation. Life Sci 74:2577–2591. https://doi.org/10.1016/j.lfs.2003.10.012

    Article  CAS  PubMed  Google Scholar 

  • Arivudainambi R, Viswanathan S, Thirugnanasambantham P, Reddy MK, Dewan ML, Sijheer JS, Gopalakrishnan C, Vijeyasekaran V (1996) Anti-inflammatory activity of flavone and its hydroxy derivatives. A structure activity study. Ind J Pharm Sci 58:18–21

    Google Scholar 

  • Barasi S, Duggal KN (1985) The effect of local and systemic application of dopaminergic agents on tail flick latency in the rat. Eur J Pharmacol 117:287–294. https://doi.org/10.1016/0014-2999(85)90001-9

    Article  CAS  PubMed  Google Scholar 

  • Bardin L, Laverenne J, Eschalier A (2000) Serotonin receptor subtypes involved in the spinal antinociceptive effect of 5-HT in rats. Pain 86:8–11

    Article  Google Scholar 

  • Dickenson AH (1991) Mechanisms of the analgesic actions of opiates and opioids. Br Med Bull 47:690–702

    Article  CAS  PubMed  Google Scholar 

  • Dubuisson D, Dennis SG (1977) The formalin test: A quantitative study of the analgesic effects of morphine, meperidine and brain stem stimulation in rats and cats. Pain 4:161–174

    Article  CAS  PubMed  Google Scholar 

  • Ecobichon DJ (1997) The Basis of Toxicology Testing. CRC Press, New York, pp 43–86

    Google Scholar 

  • Farkas O, Jakus J, Heberger K (2004) Quantitative structure-antioxidant activity relationships of flavonoid compounds. Molecules 9:1079–1088. https://doi.org/10.3390/91201079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filho AW, Filho VC, Olinger L (2008) Quercetin- further investigation of its antinociceptive properties and mechanism of action. Arch Pharm Res 31:713–721. https://doi.org/10.1007/s12272-001-1217-2

    Article  CAS  PubMed  Google Scholar 

  • Gene RM, Segura L, AdZet T, Marin E, Iglesias J (1998) Hetrotheca inuloides: anti-inflammatory and analgesic effect. J Ethnopharmacol 60:157–162

    Article  CAS  PubMed  Google Scholar 

  • Ghannadi A, Hajhashemi V, Jafaradabi H (2005) An investigation of the analgesic and anti-inflammatory effects of Nigella sativa seed polyphenols. J Med Food 8:488–493. https://doi.org/10.1089/jmf.2005.8.488

    Article  CAS  PubMed  Google Scholar 

  • Girija K, KannapaReddy M, Viswanathan S (2002) Antinociceptive effect of synthesized dihydroxy flavones, possible mechanism. Ind J Exp Biol 40:1314–1316

    CAS  Google Scholar 

  • Granados-Soto V, Argulles CF, Ortiz MI (2002) The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. Neuropharmacology 43:917–923. https://doi.org/10.1016/S0028-3908(02)00130-2

    Article  CAS  PubMed  Google Scholar 

  • Hanrahan JR, Chebib M, Johnston GAR (2011) Flavonoid modulation of GABAA receptors. Br J Pharmacol 163:234–245. https://doi.org/10.1111/j.1476-5381.2011.01228.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassenbusch SJ, Gunes S, Wachsman S, Willis KD (2002) Intrathecal clonidine in the treatment of intractable pain: a phase I/II study. Pain Med 3:85–91. https://doi.org/10.1046/j.1526-4637.2002.02014.x

    Article  PubMed  Google Scholar 

  • Jensen TS, Yaksh TL (1984) Effects of an intrathecal dopamine agonist, apomorphine, on thermal and chemical evoked noxious responses in rats. Brain Res 296:285–293

    Article  CAS  PubMed  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210. https://doi.org/10.1038/35093019

    Article  CAS  PubMed  Google Scholar 

  • Jurgensen S, DalBO S, Angers P, Santos AR, Riberio-do-valle RM (2005) Involvement of 5HT2 receptors in the antinociceptive effect of Uncaria tomentosa. Pharmacol Biochem Behav 8:466–477. https://doi.org/10.1016/j.pbb.2005.04.004

    Article  CAS  Google Scholar 

  • Kamalakannan P, Vidyalakshmi K, Viswanathan S, Ramaswamy S (2014) Antinociceptive effect of certain dimethoxy flavones in mice. Eur J Pharmacol 727:148–157. https://doi.org/10.1016/j.ejphar.2014.01.033

    Article  CAS  Google Scholar 

  • Kaur R, Singh D, Chopra K (2005) Participation of alpha 2 receptor in the antinociceptive activity of quercetin. J Med Food 8:529–532. https://doi.org/10.1089/jmf.2005.8.529

    Article  CAS  PubMed  Google Scholar 

  • Kernbaum S, Hauchecome J (1981) Administration of levodopa for relief of herpes Zoster pain. JAMA 246:132–134. https://doi.org/10.1001/jama.1981.03320020024017

    Article  CAS  PubMed  Google Scholar 

  • Koster R, Anderson M, DeeBeer AJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412–416

    Google Scholar 

  • Li S, Min-Hsiung P, Chin-Yu L, Di T, Yu W, Fereidoon S, Chi-Tang H (2009) Chemistry and health effects of polymethoxy flavones and hydroxylated polymethoxy flavones. J Funct Foods I:2–12

    Article  Google Scholar 

  • Loscalzo LM, Yow YY, Wasowski C, Chebib M, Marder M (2011) Hesperidin induces antinociceptive effect in mice and its aglycone hesperidin, binds to μ opioid receptor GIRK 1/2 currents. Pharmacol Biochem Behav 99:333–341. https://doi.org/10.1016/j.pbb.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  • Michael-Titus A, Bousselmame R, Costenin J (1990) Stimulation of dopamine D2 receptors induces an anesthesia involving an opioidergic but nonenkephalinergic link. Eur J Pharmacol 187:201–207

    Article  CAS  PubMed  Google Scholar 

  • Miley DP, Abrams AA, Atkison JH, Janowsky DS (1978) Successful treatment of thalamic pain with apomorphine. Am J Psychiatry 135:1230–1232. https://doi.org/10.1176/ajp.135.10.1230

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Neurobiology 66:355–474

    CAS  Google Scholar 

  • Muthiah NS, Viswanathan S, Thirugnanasambantham P, Reddy MK, Vijayasekaran V (1993) Antiinflammatory activity of flavone and its methoxy derivatives. A structure activity study. Ind J Pharm Sci 55:180–183

    CAS  Google Scholar 

  • Nadipelly J, Sayeli V, Kadhirvelu P, Shanmugasundaram J, Cheriyan BV, Subramanian V (2016) Anti-nociceptive activity of a few structurally related trimethoxy flavones and possible mechanisms involved. J Basic Clin Physiol Pharmacol 27:109–119. https://doi.org/10.1515/jbcpp-2015-0079

    Article  CAS  PubMed  Google Scholar 

  • Naidu PS, Singh A, Kulkarni SK (2003) D2-dopamine receptor and α2 -adrenoreceptor mediated analgesic response of quercetin. Ind J Exp Biol 41:1400–1404

    CAS  Google Scholar 

  • Ocana M, Cendan CM, Cobos EJ, Entrena JM, Baeyens JM (2004) Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol 500:203–219. https://doi.org/10.1016/j.ejphar.2004.07.026

    Article  CAS  PubMed  Google Scholar 

  • Ocana M, Baeyens JM (1993) Differential effects of K+ channel blockers on antinociception induced by alpha-2 adrenoceptor, GABAB and kappa-opioid receptor agonists. Br J Pharmacol 110:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Pan YZ, Li DP, Pan HL (2002) Inhibition of glutaminergic synaptic input to spinal lamina II (o) neurons by presynaptic α (2)- adrenergic receptors. J Neurophysiol 87:1938–1947. https://doi.org/10.1152/jn.00575.2001

    Article  CAS  PubMed  Google Scholar 

  • Pietrovski EF, Kelson AR, Valdir AF, Katiuscia R, Maria Consuelo AM, Santos ARS (2006) Antinociceptive properties of the ethanolic extract and of the triterpene 3β, 6β, 16β-trihidroxilup-20(29)-ene obtained from the flowers of Combretum leprosum in mice. Pharmacol Biochem Behav 83:90–99. https://doi.org/10.1016/j.pbb.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  • Rajendran NN, Thirugnanasabantham P, Viswanathan S, Parvathavarthini S, Ramaswamy S (2000) Antinociceptive pattern of flavone and its mechanism as tested by formalin assay. Ind J Exp Biol 38:182–185

    CAS  Google Scholar 

  • Rauck RL, Eisenach JC, Jackson K, Young LD, Southern J (1993) Epidural clonidine treatment for refractory reflex sympathetic dystrophy. Anesthesiology 79:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller JM, Paganga G (1996) Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. https://doi.org/10.1016/0891-5849(95)02227-9

    Article  CAS  PubMed  Google Scholar 

  • Robles LI, Barrios M, Del Pozo E, Doral A, Baeyens M (1996) Effect of K+ channel blockers and openers on antinociception induced by agonists of 5HT1A receptors. Eur J Pharmacol 295:181–188. https://doi.org/10.1016/0014-2999(95)00643-5

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AL, Dasilva GL, Mateussi AS, Fernandes ES, Miquel OG, Yunes RA, Calixto JB, Santos AR (2002) Involvement of monoaminergic system in the antidepressant–like effect of the hydroalcoholic extract of Siphocampylusverticilatus. Life Sci 70:1347–1358

    Article  CAS  PubMed  Google Scholar 

  • Sari MHM, Souza ACG, Rosa SG, Souza D, Dorneles Rodrigues OE, Wayne Nogueira C (2014) Contribution of dopaminergic and adenosinergic systems in the antinociceptive effect of P-chloro-selenosteroid. Eur J Pharmacol 725:79–86

    Article  Google Scholar 

  • Sasaki M, Ishizaki K, Obato H, Goto F (2001) Effects of 5 HT2 and 5 HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. Eur J Pharmacol 424:45–52

    Article  CAS  PubMed  Google Scholar 

  • Sewell RDE, Spencer PSJ (1976) Antinociceptive activity of narcotic agonists and partial agonist analgesics and other agents in tail immersion test in mice and rats. J Neuropharm 15:683–688

    Article  CAS  Google Scholar 

  • Thirugnanasambantham P, Viswanathan S, Kannappa Reddy M, Ramachandran S, Kameswaran L (1985) Analgesic activity of certain bioflavonoids. Ind J Pharm Sci 47:230–231

    Google Scholar 

  • Thirugnanasambantham P, Viswanathan S, Krishnamoorthy V, Ramachandran S, Mythiraye CI, Kameswaran L (1990) Analgesic activity of certain flavones derivatives. A structure activity study. J Ethnopharmacol 28:207–214

    Article  CAS  PubMed  Google Scholar 

  • Thirugnanasambantham P, Viswanathan S, Ramaswamy S, Krishnamoorthy V, Mythirayee CI, Kameswaran L (1993) Analgesic activity of certain flavone derivatives. A structure activity study. Clin Expl Pharmacol Physiol 20:59–63

    Article  CAS  Google Scholar 

  • Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    Article  CAS  PubMed  Google Scholar 

  • Tjolsen A, Hole K (1997) Animal models of analgesia. In: Dickenson A, Besson J. (eds) The Pharmacology of Pain, Springer, Berlin, vol 130, pp 1–20

    Google Scholar 

  • Umamaheswari S, Viswanathan S, Sathiyasekaran BWC, Parvathavarthini S, Ramaswamy S (2006) Antinociceptive activity of certain dihydroxy flavones. Ind J Pharm Sci 68:749–753

    Article  CAS  Google Scholar 

  • Venkataramanan PE, Parvathavarthini S, Viswanathan S (2000) Role of ATP sensitive potassium channel on 7-hydroxy flavone induced antinociception and possible association with changes in glycaemic status. Ind J Exp Biol 38:1172–1174

    CAS  Google Scholar 

  • Vidyalakshmi K, Kamalakannan P, Viswanathan S, Ramaswamy S (2010) Antinociceptive effect of certain dihydroxy flavones in mice. Pharmacol Biochem Behav 96:1–6

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan S, Thirugnanasambantham P, Reddy MK, Kameswaran L (1984) Gossypin induced analgesia in mice. Eur J Pharmacol 98:289–291

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan S, Thirugnanasambantham P, Ramaswamy S, Bapna JS (1993) A study on the role of cholinergic and gamma amino butyric acid systems in the antinociceptive effect of gossypin. Clin Exp Pharmacol and Physiol 20:193–196

    Article  CAS  Google Scholar 

  • Zellhofer HU, Mohler H, Di-Lio A (2009) GABAergic analgesia; new insights from mutant mice and subtype-selective agonists. Trends Pharmacol Sci 30:397–402. https://doi.org/10.1016/j.tips.2009.05.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support extended by Meenakshi Academy of Higher education & Research (Deemed to be University) for the study is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

VSA and VSU designed the work. VSU, JN, BVC, and PK carried out the experiments, collected, and analyzed the data. VSA, VSU, and JS drafted the manuscript and revised it critically. All authors agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Vijaykumar Sayeli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of welfare on animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution following the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) Government of India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayeli, V., Nadipelly, J., Kadhirvelu, P. et al. Antinociceptive effect of flavonol and a few structurally related dimethoxy flavonols in mice. Inflammopharmacol 27, 1155–1167 (2019). https://doi.org/10.1007/s10787-019-00579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-019-00579-4

Keywords

Navigation