Skip to main content

Advertisement

Log in

Anti-inflammatory effects of Chinese propolis in lipopolysaccharide-stimulated human umbilical vein endothelial cells by suppressing autophagy and MAPK/NF-κB signaling pathway

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the possible benefits of Chinese poplar propolis (CP) in inhibiting inflammation using vascular endothelial cells (VECs) cultured in a nutrient-rich condition exposed to lipopolysaccharide (LPS). Cell proliferation was detected by sulforhodamine B assay and EdU kit. The production of reactive oxygen species (ROS) and level of mitochondrial membrane potential were determined with fluorescent probe DCHF and JC-1, respectively. Protein expression was examined by immunofluorescence staining and western blotting. The results showed that CP (6.25, 12.5, and 25 μg/mL) significantly reduced LPS-induced cytotoxicity, and when challenged with CP substantially suppressed ROS overproduction and protected mitochondrial membrane potential. CP treatment significantly inhibited autophagy by inhibiting LC3B distribution and accumulation, and elevating the p62 level in an mTOR-independent manner but mainly by suppressing the translocation of p53 from the cytoplasm to the nucleus. Furthermore, CP treatment markedly reduced protein levels of TLR4 at 12 and 24 h and significantly suppressed nuclear translocation of NF-κB p65 from cytoplasm to nucleus. In addition, CP treatment significantly reduced the phosphorylation of JNK, ERK1/2, and p38 MAPK. Our findings demonstrated that CP protects VECs from LPS-induced oxidative stress and inflammation, which might be associated with depressing autophagy and MAPK/NF-κB signaling pathway. The results provided novel insights for the potential use of nutrient-rich propolis against inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CP:

Chinese poplar propolis

DCF:

Dichlorofluorescin

DMEM:

Dulbecco’s Modified Eagle’s Medium

EECP:

Ethanol-extracted Chinese propolis

FBS:

Fetal bovine serum

LPS:

Lipopolysaccharide

SRB:

Sulforhodamine B

ROS:

Reactive oxygen species

PI:

Propidium iodide

VECs:

Vascular endothelial cells

References

  • Abbas S, Alam S, Pal A, Kumar M, Singh D, Ansari KM (2016) UVB exposure enhanced benzanthrone-induced inflammatory responses in SKH-1 mouse skin by activating the expression of COX-2 and iNOS through MAP kinases/NF-kappaB/AP-1 signalling pathways. Food Chem Toxicol 96:183–190

    Article  CAS  PubMed  Google Scholar 

  • Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno-Silva B, Kawamoto D, Ando-Suguimoto ES, Casarin RCV, Alencar SM, Rosalen PL, Mayer MPA (2017) Brazilian red propolis effects on peritoneal macrophage activity: nitric oxide, cell viability, pro-inflammatory cytokines and gene expression. J Ethnopharmacol 207:100–107

    Article  CAS  PubMed  Google Scholar 

  • Chan GC, Cheung KW, Sze DM (2013) The immunomodulatory and anticancer properties of propolis. Clin Rev Allergy Immunol 44:262–273

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Wang Y, Yin X, Liu X, Xuan H (2017) Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complem Altern Med 17:71

    Article  CAS  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294:1102–1105

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JM, Mitchell J (1999) Redox imbalance in the critically ill. Br Med Bull 55:49–75

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Hepburn HR, Li Y, Chen M, Radloff SE, Daya S (2005) Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models. J Ethnopharmacol 100:273–276

    Article  Google Scholar 

  • Hu D, Cao S, Zhang G, Xiao Y, Liu S, Shang Y (2017) Florfenicol-induced mitochondrial dysfunction suppresses cell proliferation and autophagy in fibroblasts. Sci Rep 7:13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Zhang C, Wang K, Li GQ, Hu F (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue J, Gohda J, Akiyama T, Semba K (2007) NF-kappaB activation in development and progression of cancer. Cancer Sci 98:268–274

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Wang K, Li Q, Tian W, Xue X, Wu L, Hu F (2017) Antioxidant and anti-inflammatory effects of Chinese propolis during palmitic acid-induced lipotoxicity in cultured hepatocytes. J Funct Foods 34:216–223

    Article  CAS  Google Scholar 

  • Karin MJ (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    Article  CAS  PubMed  Google Scholar 

  • Korish AA, Arafa MM (2011) Propolis derivatives inhibit the systemic inflammatory response and protect hepatic and neuronal cells in acute septic shock. Braz J Infect Dis 15:332–338

    Article  PubMed  Google Scholar 

  • Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455

    Article  CAS  PubMed  Google Scholar 

  • Meng N, Wu L, Gao J, Zhao J, Su L, Su H, Zhang S, Miao J (2010) Lipopolysaccharide induces autophagy through BIRC2 in human umbilical vein endothelial cells. J Cell Physiol 225:174–179

    Article  CAS  PubMed  Google Scholar 

  • Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea M (2016) Modulation of inflammation by autophagy: consequences for human disease. Autophagy 12:245–260

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi K, Komohara Y, Fujiwara Y, Takemura K, Lei X, Nakagawa T, Sakashita N, Takeya M (2011) Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204). Biochem Biophys Res Commun 411:516–522

    Article  CAS  PubMed  Google Scholar 

  • Peng N, Meng N, Wang S, Zhao F, Zhao J, Su L, Zhang S, Zhang Y, Zhao B, Miao J (2014) An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E−/−mice. Sci Rep 4:5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pober JS, Min W, Bradley JR (2009) Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol 4:71–95

    Article  CAS  PubMed  Google Scholar 

  • Reber L, Vermeulen L, Haegeman G, Frossard N (2009) Ser276 phosphorylation of NF-κB p65 by MSK1 control SCF expression in inflammation. PLoS One 4:e4393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sforcin JM (2007) Propolis and the immune system: a review. J Ethnopharmacol 1:1–14

    Article  CAS  Google Scholar 

  • Sforcin JM, Bankova V (2011) Propolis: is there a potential for the development of new drugs? J Ethnopharmacol 133:253–260

    Article  CAS  PubMed  Google Scholar 

  • Sun LP, Chen AL, Hung HC, Chien YH, Huang JS, Huang CY, Chen YW, Chen CN (2012) Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J Agric Food Chem 60:11748–11758

    Article  CAS  PubMed  Google Scholar 

  • Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91

    Article  CAS  PubMed  Google Scholar 

  • Tousoulis D, Simopoulou C, Papageorgiou N, Oikonomou E, Hatzis G, Siasos G, Tsiamis E, Stefanadis C (2014) Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches. Pharmacol Ther 144:253–267

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Dong Z, Huang B, Zhao B, Wang H, Zhao J, Kung H, Zhang S, Miao J (2010) Distinct patterns of autophagy evoked by two benzoxazine derivatives in vascular endothelial cells. Autophagy 6:1115–1124

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Ping S, Huang S, Hu L, Xuan H, Zhang C, Hu F (2013) Molecular mechanisms underlying the in vitro anti-inflammatory effects of a flavonoid-rich ethanol extract from chinese propolis (poplar type). Evid Based Complement Alternat Med 2013:127672

    PubMed  PubMed Central  Google Scholar 

  • Wang K, Zhang J, Ping S, Ma Q, Chen X, Xuan H, Shi J, Zhang C, Hu F (2014) Anti-inflammatory effects of ethanol extracts of Chinese propolis and buds from poplar (Populusxcanadensis). J Ethnopharmacol 155:300–311

    Article  PubMed  Google Scholar 

  • Watanabe MA, Amarante MK, Conti BJ, Sforcin JM (2011) Cytotoxic constituents of propolis inducing anticancer effects: a review. J Pharm Pharmacol 63:1378–1386

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Liu XD, Gong X, Eissa NT (2008) Signaling pathway of autophagy associated with innate immunity. Autophagy 4:110–112

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Fattah EA, Liu XD, Jagannath C, Eissa NT (2013) Harnessing of TLR-mediated autophagy to combat mycobacteria in macrophages. Tuberculosis (Edinb) 93:S33–S37

    Article  CAS  Google Scholar 

  • Xuan H, Zhu R, Li Y, Hu F (2011) Inhibitory effect of Chinese propolis on phosphatidylcholine-specific phospholipase C activity in vascular endothelial cells. Evid Based Complement Alternat Med 2011:985278

    Article  PubMed  Google Scholar 

  • Zhang L, Li HY, Li H, Zhao J, Su L, Zhang Y, Zhang SL, Miao JY (2011) Lipopolysaccharide activated phosphatidylcholine-specific phospholipase C and induced IL-8 and MCP-1 production in vascular endothelial cells. J Cell Physiol 226:1694–1701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31201860, 31672499), Shandong Province Higher Educational Science and Technology Program (J16LE21) and the earmarked fund for Modern Agro-industry Technology Research System from the Ministry of Agriculture of China (CARS-44).

Author information

Authors and Affiliations

Authors

Contributions

HX and FH designed the work, drafted the manuscript, and revised it critically. WY, HC, and ML conducted the work, collected, and analyzed the data. All authors agreed to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Hongzhuan Xuan or Fuliang Hu.

Ethics declarations

Availability of data and materials

All data supporting our findings are adequately contained within the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, H., Yuan, W., Chang, H. et al. Anti-inflammatory effects of Chinese propolis in lipopolysaccharide-stimulated human umbilical vein endothelial cells by suppressing autophagy and MAPK/NF-κB signaling pathway. Inflammopharmacol 27, 561–571 (2019). https://doi.org/10.1007/s10787-018-0533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0533-6

Keywords

Navigation