Skip to main content

Protective effects of conventional and colon-targeted lycopene and linalool on ulcerative colitis induced by acetic acid in rats

Abstract

Objective

To compare the potential protective effects of conventional and colon-targeted lycopene (TLC) and linalool (TLN) on acetic acid (AA)-induced ulcerative colitis (UC) in rats.

Methods

Conventional and colon-targeted LC (10 mg/kg) and LN (200 mg/kg) were administered in vivo orally for 7 days and sulfasalazine (100 mg/kg) was also used as reference drug. Then, 4% AA was administered intrarectally to induce UC. Subsequently, the colon tissues were taken as samples for biochemical and histopathological analysis.

Results

Malondialdehyde (MDA), interleukin 1β (IL-1β), IL-6, cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB) levels were decreased (p < 0.05) in the targeted groups compared to the AA group, whereas nuclear factor-erythroid 2-related factor 2 (Nrf-2) level was increased (p < 0.05). Tumor necrosis factor α (TNF-α) level was also decreased (p < 0.05) and catalase activity (CAT) was increased (p < 0.05) in the TLC group compared to the AA group. IL-1β and IL-6 levels were lower in the TLC group compared to the conventional LC and sulfasalazine groups (p < 0.05). COX-2 and NF-κB levels were lower, while the Nrf-2 level was higher in the targeted groups compared to the conventional groups (p < 0.05). Furthermore, COX-2 level was lower and Nrf-2 level was higher in the targeted groups compared to the sulfasalazine group (p < 0.05).

Conclusion

As expected, sulfasalazine was effective on all parameters analyzed, but the colon-targeted pretreatments were more effective from sulfasalazine on some parameters. Therefore, colon-targeted plant-derived therapies might be alternative approaches to provide protection against UC, which deserves to be investigated further.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ackerman Z, Karmeli F, Cohen P, Rachmilewitz D (2003) Experimental colitis in rats with portal hypertension and liver disease. Inflamm Bowel Dis 9:18–24

    Article  PubMed  Google Scholar 

  2. Aebi H (1984) Catalase in vitro assay methods. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  3. Ali H, Weigmann B, Neurath MF, Collnot EM, Windbergs M, Lehr CM (2014) Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release 183:167–177

    Article  CAS  PubMed  Google Scholar 

  4. Almeer RS, Mahmoud SM, Amin HK, Abdel Moneim AE (2018) Ziziphus spina–christi fruit extract suppresses oxidative stress and p38 MAPK expression in ulcerative colitis in rats via induction of Nrf2 and HO-1 expression. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2018.03.002

    Article  PubMed  Google Scholar 

  5. Al-Rejaie SS, Abuohashish HM, Al-Enazi MM, Al-Assaf AH, Parmar MY, Ahmed MM (2013) Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J Gastroenterol 9(34):5633–5644

    Article  CAS  Google Scholar 

  6. Amirshahrokhi K, Bohlooli S, Chinifroush MM (2011) The effect of methylsulfonylmethane on the experimental colitis in the rat. Toxicol Appl Pharmacol 253(3):197–202

    Article  CAS  PubMed  Google Scholar 

  7. Ananthakrishnan AN (2015) Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 12(4):205–217

    Article  PubMed  Google Scholar 

  8. Andrews C, McLean MH, Durum SK (2016) Interleukin-27 as a novel therapy for inflammatory bowel disease: a critical review of the literature. Inflamm Bowel Dis 22(9):2255–2264

    Article  PubMed  PubMed Central  Google Scholar 

  9. Atessahin A, Ceribası AO, Yılmaz S (2007) Lycopene, a carotenoid, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rats. Basic Clin Pharmacol Toxicol 100(6):372–376

    Article  CAS  PubMed  Google Scholar 

  10. Balmus IM, Ciobica A, Trifan A, Stanciu C (2016) The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: clinical aspects and animal models. Saudi J Gastroenterol 22(1):3–17

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369(9573):1627–1640

    Article  CAS  PubMed  Google Scholar 

  12. Beutler E (1975) Red cell metabolism: a manual of biochemical methods. Grune Stratton, New York, pp 67–69

    Google Scholar 

  13. Cha JH, Kim WK, Ha AW, Kim MH, Chang MJ (2017) Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutr Res Pract 11(2):90–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho EJ, Shin JS, Noh YS, Cho YW, Hong SJ, Park JH, Lee JY, Lee JY, Lee KT (2011) Anti-inflammatory effects of methanol extract of Patrinia scabiosaefolia in mice with ulcerative colitis. J Ethnopharmacol 136(3):428–435

    Article  PubMed  Google Scholar 

  15. Contran RS, Kumar V, Collins T (2005) Robbins’s pathological basis of disease, 7th edn. Saunders, Philadelphia, p 815

    Google Scholar 

  16. D’Argenio G, Mazzone G, Tuccillo C, Ribecco MT, Graziani G, Gravina AG, Caserta S, Guido S, Fogliano V, Caporaso N, Romano M (2012) Apple polyphenols extract (APE) improves colon damage in a rat model of colitis. Dig Liver Dis 44(7):555–562

    Article  CAS  PubMed  Google Scholar 

  17. De Kumar A, Datta S, Mukherjee A (2013) Application of an amine functionalized biopolymer in the colonic delivery of glycyrrhizin: a design and in vivo efficacy study. Sci Pharm 81(4):1101–1122

    Article  CAS  Google Scholar 

  18. Debnath T, Kim DH, Lim BO (2013) Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 18(6):7253–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Ashmawy NE, Khedr NF, El-Bahrawy HA, El-Adawy SA (2017) Downregulation of iNOS and elevation of cAMP mediate the anti-inflammatory effect of glabridin in rats with ulcerative colitis. Inflammopharmacology. https://doi.org/10.1007/s10787-017-0373-9

    Article  PubMed  Google Scholar 

  20. Ellman G (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  21. Feng D, Ling WH, Duan RD (2010) Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-kappaB in macrophages. Inflamm Res 59(2):115–121

    Article  CAS  PubMed  Google Scholar 

  22. Ferrari D, Speciale A, Cristani M, Fratantonio D, Molonia MS, Ranaldi G, Saija A, Cimino F (2016) Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via Nrf2 pathway activation. Toxicol Lett 264:51–58

    Article  CAS  PubMed  Google Scholar 

  23. Gugulothu D, Kulkarni A, Patravale V, Dandekar P (2014) pH-sensitive nanoparticles of curcumin–celecoxib combination: evaluating drug synergy in ulcerative colitis model. J Pharm Sci 103(2):687–696

    Article  CAS  PubMed  Google Scholar 

  24. Han CW, Kwun MJ, Kim KH, Choi JY, Oh SR, Ahn KS, Lee JH, Joo M (2013) Ethanol extract of Alismatis Rhizoma reduces acute lung inflammation by suppressing NF-κB and activating Nrf2. J Ethnopharmacol 146(1):402–410

    Article  CAS  PubMed  Google Scholar 

  25. He Q, Zhou W, Xiong C, Tan G, Chen M (2015) Lycopene attenuates inflammation and apoptosis in post-myocardial infarction remodeling by inhibiting the nuclear factor-κB signaling pathway. Mol Med Rep 11(1):374–378

    Article  CAS  PubMed  Google Scholar 

  26. Hegazy SK, El-Bedewy MM (2010) Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J Gastroenterol 16(33):4145–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hua S, Marks E, Schneider JJ, Keely S (2015) Advances in oral nano-delivery systems for colon-targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine 11(5):1117–1132

    Article  CAS  PubMed  Google Scholar 

  28. Huo M, Cui X, Xue J, Chi G, Gao R, Deng X, Guan S, Wei J, Soromou LW, Feng H, Wang D (2013) Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J Surg Res 180(1):47–54

    Article  CAS  Google Scholar 

  29. Iwasaki K, Zheng YW, Murata S, Ito H, Nakayama K, Kurokawa T, Sano N, Nowatari T, Villareal MO, Nagano YN, Isoda H, Matsui H, Ohkohchi N (2016) Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J Gastroenterol 22(44):9765–9774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jana S, Patra K, Sarkar S, Jana J, Mukherjee G, Bhattacharjee S, Mandal DP (2014) Antitumorigenic potential of linalool is accompanied by modulation of oxidative stress: an in vivo study in sarcoma-180 solid tumor model. Nutr Cancer 66(5):835–848

    Article  CAS  PubMed  Google Scholar 

  31. Jobin C, Sartor RB (2000) NF-kappaB signaling proteins as therapeutic targets for inflammatory bowel diseases. Inflamm Bowel Dis 6(3):206–213

    Article  CAS  PubMed  Google Scholar 

  32. Jung Y, Kim YM (2010) What should be considered on design of a colon-specific prodrug? Expert Opin Drug Deliv 7(2):245–258

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan GG (2015) The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 12:720–727

    Article  Google Scholar 

  34. Kaplan GG, Ng SC (2017) Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152(2):313–321

    Article  PubMed  Google Scholar 

  35. Khan MN, Lane ME, McCarron PA, Tambuwala MM (2017) Caffeic acid phenethyl ester is protective in experimental ulcerative colitis via reduction in levels of pro-inflammatory mediators and enhancement of epithelial barrier function. Inflammopharmacology. https://doi.org/10.1007/s10787-017-0364-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN (2006) Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res 66(24):11580–11584

    Article  CAS  PubMed  Google Scholar 

  37. Lee Y, Kim W, Hong S, Park H, Yum S, Yoon JH, Jung Y (2014) Colon-targeted celecoxib ameliorates TNBS-induced rat colitis: a potential pharmacologic mechanism and therapeutic advantages. Eur J Pharmacol 726:49–56

    Article  CAS  PubMed  Google Scholar 

  38. Li J, Zhang X, Huang H (2014) Protective effect of linalool against lipopolysaccharide/D-galactosamine-induced liver injury in mice. Int Immunopharmacol 23(2):523–529

    Article  CAS  PubMed  Google Scholar 

  39. Li Q, Zhai W, Jiang Q, Huang R, Liu L, Dai J, Gong W, Du S, Wu Q (2015) Curcumin–piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int J Pharm 490(1–2):22–31

    Article  CAS  PubMed  Google Scholar 

  40. Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783(5):713–727

    Article  CAS  PubMed  Google Scholar 

  41. Loguercio C, D’Argenio G, Delle Cave M, Cosenza V, Della Valle N, Mazzacca G, del Vecchio Blanco C (1996) Direct evidence of oxidative damage in acute and chronic phases of experimental colitis in rats. Dig Dis Sci 41(6):1204–1211

    Article  CAS  PubMed  Google Scholar 

  42. Lopetuso LR, Scaldaferri F, Bruno G, Petito V, Franceschi F, Gasbarrini A (2015) The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. Eur Rev Med Pharmacol Sci 19(6):1068–1076

    CAS  PubMed  Google Scholar 

  43. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with pholin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  44. Luna LG (1968) Manuel of histologic staining methods of armed forces institute of pathology. McGraw-Hill, New York

    Google Scholar 

  45. Mura C, Manconi M, Valenti D, Manca ML, Diez-Sales O, Loy G, Fadda AM (2011a) In vitro study of N-succinyl chitosan for targeted delivery of 5-aminosalicylic acid to colon. Carbonhydr Polym 85(3):578–583

    Article  CAS  Google Scholar 

  46. Mura C, Nácher A, Merino V, Merino-Sanjuan M, Carda C, Ruiz A, Manconi M, Loy G, Fadda AM, Diez-Sales O (2011b) N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: in vivo study with TNBS-induced colitis model in rats. Int J Pharm 416(1):145–154

    CAS  PubMed  Google Scholar 

  47. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  Google Scholar 

  48. Pandurangan AK, Ismail S, Saadatdoust Z, Esa NM (2015) Allicin alleviates dextran sodium sulfate- (DSS-) induced ulcerative colitis in BALB/c mice. Oxid Med Cell Longev 2015:605208. https://doi.org/10.1155/2015/605208

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park DD, Yum HW, Zhong X, Kim SH, Kim SH, Kim DH, Kim SJ, Na HK, Sato A, Miura T, Surh YJ (2017) Perilla frutescens extracts protects against dextran sulfate sodium-induced murine colitis: NF-κB, STAT3, and Nrf2 as putative targets. Front Pharmacol 8:482

    Article  CAS  Google Scholar 

  50. Popov SV, Markov PA, Nikitina IR, Petrishev S, Smirnov V, Ovodov YS (2006) Preventive effect of a pectic polysaccharide of the common cranberry Vaccinium oxycoccos L. on acetic acid-induced colitis in mice. World J Gastroenterol 12(41):6646–6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rezayat SM, Dehpour AR, Motamed SM, Yazdanparast M, Chamanara M, Sahebgharani M, Rashidian A (2017) Foeniculum vulgare essential oil ameliorates acetic acid-induced colitis in rats through the inhibition of NF-kB pathway. Inflammopharmacology. https://doi.org/10.1007/s10787-017-0409-1

    Article  PubMed  Google Scholar 

  52. Roberts PJ, Morgan K, Miller R, Hunter JO, Middleton SJ (2001) Neuronal COX-2 expression in human myenteric plexus in active inflammatory bowel disease. Gut 48(4):468–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sahin K, Tuzcu M, Sahin N, Ali S, Kucuk O (2010) Nrf2/HO-1 signaling pathway may be the prime target for chemoprevention of cisplatin-induced nephrotoxicity by lycopene. Food Chem Toxicol 48(10):2670–2674

    Article  CAS  PubMed  Google Scholar 

  54. Sánchez-Fidalgo S, Cárdeno A, Villegas I, Talero E, de la Lastra CA (2010) Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur J Pharmacol 633(1–3):78–84

    Article  CAS  PubMed  Google Scholar 

  55. Sánchez-Fidalgo S, Villegas I, Rosillo MÁ, Aparicio-Soto M, de la Lastra CA (2015) Dietary squalene supplementation improves DSS-induced acute colitis by downregulating p38 MAPK and NFkB signaling pathways. Mol Nutr Food Res 59(2):284–292

    Article  CAS  PubMed  Google Scholar 

  56. Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor kappa B inflammatory bowel disease. Gut 42(4):477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tahan G, Aytac E, Aytekin H, Gunduz F, Dogusoy G, Aydin S, Tahan V, Uzun H (2011) Vitamin E has a dual effect of anti-inflammatory and antioxidant activities in acetic acid-induced ulcerative colitis in rats. Can J Surg 54(5):333–338

    Article  PubMed  PubMed Central  Google Scholar 

  58. Thippeswamy BS, Mahendran S, Biradar MI, Raj P, Srivastava K, Badami S, Veerapur VP (2011) Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur J Pharmacol 654(1):100–105

    Article  CAS  PubMed  Google Scholar 

  59. Tuzcu M, Aslan A, Tuzcu Z, Yabas M, Bahcecioglu IH, Ozercan IH, Kucuk O, Sahin K (2012) Tomato powder impedes the development of azoxymethane-induced colorectal cancer in rats through suppression of COX-2 expression via NF-κB and regulating Nrf2/HO-1 pathway. Mol Nutr Food Res 56(9):1477–1481

    Article  CAS  PubMed  Google Scholar 

  60. Wang KP, Zhang C, Zhang SG et al (2015) 3-(3-pyridylmethylidene)-2-indolinone reduces the severity of colonic injury in a murine model of experimental colitis. Oxid Med Cell Longev 2015:959253. https://doi.org/10.1155/2015/959253

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xiao B, Si X, Zhang M, Merlin D (2015) Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy. Colloids Surf B Biointerfaces 135:379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yan H, Wang H, Zhang X, Li X, Yu J (2015) Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice. Int J Clin Exp Med 8(11):20245–20253

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang H, Deng A, Zhang Z, Yu Z, Liu Y, Peng S, Wu L, Qin H, Wang W (2016) The protective effect of epicatechin on experimental ulcerative colitis in mice is mediated by increasing antioxidation and by the inhibition of NF-κB pathway. Pharmacol Rep 68(3):514–520

    Article  CAS  PubMed  Google Scholar 

  64. Zhu H, Li YR (2012) Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood) 237(5):474–480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Scientific Research Projects Coordination of Mustafa Kemal University (project number: 14025).

Author information

Affiliations

Authors

Corresponding author

Correspondence to İbrahim Ozan Tekeli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tekeli, İ.O., Ateşşahin, A., Sakin, F. et al. Protective effects of conventional and colon-targeted lycopene and linalool on ulcerative colitis induced by acetic acid in rats. Inflammopharmacol 27, 313–322 (2019). https://doi.org/10.1007/s10787-018-0485-x

Download citation

Keywords

  • Ulcerative colitis
  • Colon targeting
  • Lycopene
  • Linalool
  • Rat