Skip to main content
Log in

HPLC–DAD identification of polyphenols from ethyl acetate extract of Amaranthus spinosus leaves and determination of their antioxidant and antinociceptive effects

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Amaranthus spinosus has been consumed traditionally to prevent various diseases including abdominal pain. In this study, the phytochemical composition, antioxidant and analgesic activities of an ethyl acetate extract of A. spinosus leaves (ASEA) were evaluated. The ASEA had the highest concentrations of total phenols (462.2 mg GAE/g DW), condensed tannin (5.01 mg CE/g DW) and total flavonoid contents (30.07 mg CE/g DW) compared to the chloroform, n-hexane, n-butanol and water extracts. Similarly, ASEA showed the most effective total antioxidant activity (45.45 µg/mL), DPPH scavenging activity (27.32 µg/mL) and hydrogen peroxide scavenging activity (30.60 µg/mL). ASEA with the doses of 200–600 mg/kg (p.o.) clearly demonstrated antinociceptive effects by reducing acetic acid-induced abdominal contortions with a maximal inhibition of 79.57% at 600 mg/kg and increasing latencies of the hot-plate paw-licking response. The tested doses also significantly (p < 0.001) decreased the reaction time in the formalin test at the neurogenic and inflammatory phases. ASEA contained ten polyphenols with caffeic acid being the predominant polyphenol. Overall, this study gave evidence that A. spinosus is a new antioxidant and analgesic agent, and justified its traditional use for the treatment of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amin I, Norazaidah Y, Emmy Hainida KI (2006) Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem 94:47–52

    Article  CAS  Google Scholar 

  • Bounatirou S, Smiti S, Miguel MG, Faleiro L, Rejeb MN, Neffati M, Pedro LG (2007) Chemical composition antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem 105:146–155

    Article  CAS  Google Scholar 

  • Carocho M, Ferreira IC (2013) A review on antioxidants prooxidants and related controversy natural and synthetic compounds screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  Google Scholar 

  • Coderre TJ, Vaccarino AL, Melzack R (1990) Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res 535:155–158

    Article  CAS  Google Scholar 

  • Collier HOJ, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol 32:295–310

    CAS  Google Scholar 

  • Dewanto V, Wu X, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  • Hlila MB, Mosbah H, Mssada K, Jannet HB, Aouni M, Selmi B (2015) Acetylcholinesterase inhibitory and antioxidant properties of roots extracts from the Tunisian Scabiosa arenaria Forssk. Ind Crop Prod 67:62–69

    Article  CAS  Google Scholar 

  • Huang B, Ke H, He J, Ban X, Zeng H, Wang Y (2011) Extracts of Halenia elliptica exhibit antioxidant properties in vitro and in vivo. Food Chem Toxicol 49:185–190

    Article  CAS  Google Scholar 

  • Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114

    Article  CAS  Google Scholar 

  • Ibrahim B, Sowemimo A, van Rooyen A, Van de Venter M (2012) Antiinflammatory analgesic and antioxidant activities of Cyathula prostrata (Linn.) Blume (Amaranthaceae). J Ethnopharmacol 141:282–289

    Article  CAS  Google Scholar 

  • Ishtiaq S, Ali T, Ahmad B, Anwar F, Afridi MSK, Shaheen H (2017) Phytochemical and biological evaluations of methanolic extract of Amaranthus graecizans subsp. silvestris (Vill.) Brenan. Br J Pharm Res 15:1–11

    Article  Google Scholar 

  • Jayaprakasam B, Zhang Y, Nair MG (2004) Tumor cell proliferation and cyclooxygenase enzyme inhibitory compounds in Amaranthus tricolor. J Agric Food Chem 52:6939–6943

    Article  CAS  Google Scholar 

  • Jayaprakasam B, Vanisree M, Zhang Y, Dewitt DL, Nair MG (2006) Impact of alkyl esters of caffeic and ferulic acids on tumor cell proliferation, cyclooxygenase enzyme, and lipid peroxidation. J Agric Food Chem 54:5375–5381

    Article  CAS  Google Scholar 

  • Joana Gil-Chávez G, Villa JA, Fernando Ayala-Zavala J, Basilio Heredia J, Sepulveda D, Yahia EM, González-Aguilar GA (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients an overview. Compreh Rev Food Sci Food Saf 12:5–23

    Article  Google Scholar 

  • Khoudja NK, Boulekbache-Makhlouf L, Madani K (2014) Antioxidant capacity of crude extracts and their solvent fractions of selected Algerian Lamiaceae. Ind Crop Prod 52:177–182

    Article  Google Scholar 

  • Kim HP, Son KH, Chang HW, Kang SS (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 96:229–245

    Article  CAS  Google Scholar 

  • Kumar BSA, Lakshman K, Jayaveera KN, Shekar DS, Nandeesh R, Velmurugan C (2010) Chemoprotective and antioxidant activities of methanolic extract of Amaranthus spinosus leaves on paracetamol induced-liver damage in rats. Acta Med Salin 39:68–74

    Google Scholar 

  • Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X (2010) In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 82:1278–1283

    Article  CAS  Google Scholar 

  • Mariod AA, Ibrahim RM, Ismail M, Ismail N (2009) Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chem 116:306–312

    Article  CAS  Google Scholar 

  • Mehrotra A, Shanbhag R, Chamallamudi MR, Singh VP, Mudgal J (2011) Ameliorative effect of caffeic acid against inflammatory pain in rodents. Eur J Pharmacol 666:80–86

    Article  CAS  Google Scholar 

  • Miller T (1983) Protective effects of prostaglandins against gastric mucosal damage: current knowledge and proposed mechanisms. Ame J Physiol Gastrointest Liver Physiol 245:G601–G623

    Article  CAS  Google Scholar 

  • Naczk M, Shahidi F (2006) Phenolics in cereals fruits and vegetables occurrence extraction and analysis. J Pharm Biomed Anal 41:1523–1542

    Article  CAS  Google Scholar 

  • Nardini M, Leonardi F, Scaccini C, Virgili F (2001) Modulation of ceramide-induced NF-κB binding activity and apoptotic response by caffeic acid in U937 cells: comparison with other antioxidants. Free Rad Biol Med 30:722–733

    Article  CAS  Google Scholar 

  • Nwidu LL, Nwafor PA, Da Silva VC, Rodrigues CM, dos Santos LC, Vilegas W, Nunes-de-Souza RL (2011) Anti-nociceptive effects of Carpolobia lutea G. Don (Polygalaceae) leaf fractions in animal models. Inflammopharmacol 19:215–225

    Article  CAS  Google Scholar 

  • Okoli CO, Akah PA, Nwafor SV, Anisiobi AI, Ibegbunam IN, Erojikwe O (2007) Anti-inflammatory activity of hexane leaf extract of Aspilia africana CD Adams. J Ethnopharmacol 109:219–225

    Article  CAS  Google Scholar 

  • Prasad KN, Yang B, Yang S, Chen Y, Zhao M, Ashraf M, Jiang Y (2009) Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem 116:1–7

    Article  Google Scholar 

  • Rjeibi I, Saad AB, Hfaiedh N (2016) Oxidative damage and hepatotoxicity associated with deltamethrin in rats: the protective effects of Amaranthus spinosus seed extract. Biomed Pharmacother 84:853–860

    Article  CAS  Google Scholar 

  • Schmauss C, Yaksh TL (1984) In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther 228:1–12

    CAS  PubMed  Google Scholar 

  • Sun B, Ricardo-da-Silva JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274

    Article  CAS  Google Scholar 

  • Tanmoy G, Arijit M, Tanushree S, Jagadish S, Kumar MT (2014) Pharmacological actions and phytoconstituents of Amaranthus spinosus Linn a review. Intern J Pharmacogn Phytochem Res 6:405–413

    Google Scholar 

  • Tlili N, Elfalleh W, Hannachi H, Yahia Y, Khaldi A, Ferchichi A, Nasri N (2013) Screening of natural antioxidants from selected medicinal plants. Int J Food Prop 16:1117–1126

    Article  CAS  Google Scholar 

  • Vaz ZR, Mata LV, Calixto JB (1997) Analgesic effect of the herbal medicine catuama in thermal and chemical models of nociception in mice. Phytother Res 11:101–110

    Article  CAS  Google Scholar 

  • Wheeler-Aceto H, Porreca F, Cowan A (1990) The rat paw formalin test: comparison of noxious agents. Pain 40:229–238

    Article  CAS  Google Scholar 

  • Xu Y, Lin D, Yu X, Xie X, Wang L, Lian L, Huang X (2016) The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors. Oncotarget 7:20455–20468

    PubMed  PubMed Central  Google Scholar 

  • Ye Küpeli E, Silada E (2007) Flavonoids with anti-inflammatory and antinociceptive activity from Cistus laurifolius L. leaves through bioassay-guided procedures. J Ethnopharmacol 112:524–530

    Article  Google Scholar 

  • Ymele EV, Dongmo AB, Dimo T (2013) Analgesic and anti-inflammatory effect of aqueous extract of the stem bark of Allanblackia gabonensis (Guttiferae). Inflammopharmacol 21:21–30

    Article  CAS  Google Scholar 

  • Zeashan H, Amresh G, Singh S, Rao CV (2008) Hepatoprotective activity of Amaranthus spinosus in experimental animals. Food Chem Toxicol 46:3417–3421

    Article  CAS  Google Scholar 

  • Zeashan H, Amresh G, Rao CV, Singh S (2009) Antinociceptive activity of Amaranthus spinosus in experimental animals. J Ethnopharmacol 122:492–496

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Ministry of Higher Education and Scientific Research.

Funding

The authors did not get any fund from any organization for this study.

Author information

Authors and Affiliations

Authors

Contributions

IR conducted the experiments and wrote the draft. ABS conducted data analysis and contributed to the writing of the manuscript. JS and AF contributed substantially to the writing of the manuscript. SN participated in experimental design and provided reagents. MSA revised the pharmacological part of the manuscript. NH participated in the direction of all the experimental parts of the manuscript. SS has provided direction during the current investigation and has contributed to the writing of the manuscript. All authors edited, read and approved the final manuscript.

Corresponding author

Correspondence to Ilhem Rjeibi.

Ethics declarations

Conflict of interest

Authors have declared no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rjeibi, I., Ben Saad, A., Sdayria, J. et al. HPLC–DAD identification of polyphenols from ethyl acetate extract of Amaranthus spinosus leaves and determination of their antioxidant and antinociceptive effects. Inflammopharmacol 27, 975–984 (2019). https://doi.org/10.1007/s10787-018-0482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0482-0

Keywords

Navigation