Advertisement

Quinazoline clubbed 1,3,5-triazine derivatives as VEGFR2 kinase inhibitors: design, synthesis, docking, in vitro cytotoxicity and in ovo antiangiogenic activity

  • Prateek Pathak
  • Parjanya Kumar Shukla
  • Vikas Kumar
  • Ankit Kumar
  • Amita Verma
Original Article

Abstract

A series of quinazoline clubbed 1,3,5-triazine derivatives (QCT) were synthesized and evaluated for their in vitro anticancer activity against HeLa (human cervical cancer), MCF-7 (human breast cancer cell), HL-60 (human promyelocytic leukemia cell), HepG2 (human Hepatocellular carcinoma cell), and one normal cell line HFF (human foreskin fibroblasts). In vitro assay result encouraged to further move towards in ovo anticancer evaluation using chick embryo. The series of QCT derivatives showed higher anticancer and antiangiogenic activity against HeLa and MCF-7 cell lines. In the series, synthetic molecule 8d, 8l, and 8m displayed significant activity. Further, these results substantiated by docking study on VGFR2. SAR study concluded that the potency of drugs depends on the nature of aliphatic substitution and the heterocyclic ring system.

Graphical Abstract

Keywords

MTT assay Angiogenesis inhibition assay 1,3,5-Triazine Quinazoline derivative VGFR2 docking 

Notes

Acknowledgements

The authors are thankful to the Department of Pharmaceutical Sciences, FHS, SHUATS, Allahabad for proving essential facility and support to perform this study. The author also acknowledged to Dr. Sachin Sakat for statistical analysis.

Compliance with ethical standards

Conflict of interest

The authors have declared that there is no conflict of interest.

References

  1. Ahmadian S, Barar J, Saei AA, Fakhree MA, Omidi Y (2009) Cellular toxicity of nanogenomedicine in MCF-7 cell line: MTT assay. J Vis Exp 26:e1191.  https://doi.org/10.3791/1191 Google Scholar
  2. Bergers G, Benjamin LE (2003) Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410.  https://doi.org/10.1038/nrc1093 CrossRefPubMedGoogle Scholar
  3. Bjerkvig R, Johansson M, Miletic H, Niclou SP (2009) Cancer stem cells and angiogenesis. Semin Cancer Biol 19:279–284CrossRefPubMedGoogle Scholar
  4. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69:4–10CrossRefPubMedGoogle Scholar
  5. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257.  https://doi.org/10.1038/35025220 CrossRefPubMedGoogle Scholar
  6. Cross S, Cruciani G (2010) Molecular fields in drug discovery: getting old or reaching maturity? Drug Discov Today 15:23–32CrossRefPubMedGoogle Scholar
  7. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31.  https://doi.org/10.1038/nm0195-27 CrossRefPubMedGoogle Scholar
  8. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18.  https://doi.org/10.1146/annurev.med.57.121304.131306 CrossRefPubMedGoogle Scholar
  9. Grodzik M, Sawosz E, Wierzbicki M et al (2011) Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int J Nanomed 6:3041–3048.  https://doi.org/10.2147/IJN.S25528 Google Scholar
  10. Inomata H, Goushi K, Masuko T et al (2004) High-efficiency organic electrophosphorescent diodes using 1,3,5-triazine electron transport materials. Chem Mater 49:1285–1291.  https://doi.org/10.1021/cm034689t CrossRefGoogle Scholar
  11. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90.  https://doi.org/10.3322/caac.20107 CrossRefPubMedGoogle Scholar
  12. Kıyan HT, Demirci B, Kemal Hüsnü Can Başer KH et al (2014) The in vivo evaluation of anti-angiogenic effects of Hypericum essential oils using the chorioallantoic membrane assay. Pharm Biol 52(1):44–50.  https://doi.org/10.3109/13880209.2013.810647 CrossRefPubMedGoogle Scholar
  13. Krenn L, Paper DH (2009) Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine 16:1083–1088.  https://doi.org/10.1016/j.phymed.2009.05.0177 CrossRefPubMedGoogle Scholar
  14. Kue CS, Tan KY, Lam ML et al (2015) Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp Anim 64(2):129–138.  https://doi.org/10.1538/expanim.14-0059 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kumar V, Bhatt PC, Rahman M et al (2017a) Fabrication, optimization, and characterization of umbelliferone β-d-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. Int J Nanomed 12:6747–6758.  https://doi.org/10.2147/IJN.S136629 CrossRefGoogle Scholar
  16. Kumar V, Bhatt PC, Rahman M et al (2017b) Umbelliferon-α-d-glucopyranosyl-(2 I → 1 II)-α-d-glucopyranoside ameliorates diethylnitrosamine induced precancerous lesion development in liver via regulation of inflammation, hyperproliferation and antioxidant at pre-clinical stage. Biomed Pharmacother 94:834–842.  https://doi.org/10.1016/j.biopha.2017.07.047 CrossRefPubMedGoogle Scholar
  17. Lengauer T, Lemmen C, Rarey M, Zimmermann M (2004) Novel technologies for virtual screening. Drug Discov Today 9:27–34CrossRefPubMedGoogle Scholar
  18. Nishida N, Yano H, Nishida T et al (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2:213–219CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ou-Yang S, Lu J, Kong X et al (2012) Computational drug discovery. Acta Pharmacol Sin 33:1131–1140.  https://doi.org/10.1038/aps.2012.109 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Patel RM, Patel SK (2011) Cytotoxic activity of methanolic extract of Artocarpus heterophyllus against a549, hela and mcf-7 cell lines. J Appl Pharm Sci 1:167–171Google Scholar
  21. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar
  22. Prager GW, Poettler M (2011) Angiogenesis in cancer. Hamostaseologie 32:105–114.  https://doi.org/10.5482/ha-1163 CrossRefPubMedGoogle Scholar
  23. Rollinger JM, Stuppner H, Langer T (2008) Virtual screening for the discovery of bioactive natural products. Prog Drug Res 65(211):213–249.  https://doi.org/10.1007/978-3-7643-8117-2_6 Google Scholar
  24. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66:7–30.  https://doi.org/10.3322/caac.21332 CrossRefPubMedGoogle Scholar
  25. Singh D, Singh M, Yadav E et al (2018) RSC Advances knockdown oxidative stress and proinflammatory markers by Madhuca longifolia embedded silver nanoparticles. RSC Adv 8:6940–6953.  https://doi.org/10.1039/C7RA12775H CrossRefGoogle Scholar
  26. Srivastava JK, Pillai GG, Bhat HR et al (2017) Design and discovery of novel monastrol-1, 3, 5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase. Scientific Reports 7:5851.  https://doi.org/10.1038/s41598-017-05934-5 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sys GML, Lapeire L, Stevens N et al (2013) The in ovo CAM-assay as a xenograft model for sarcoma. J Vis Exp 77:e50522.  https://doi.org/10.3791/50522 Google Scholar
  28. Tonini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22:6549–6556.  https://doi.org/10.1038/sj.onc.1206816 CrossRefPubMedGoogle Scholar
  29. Verma A, Bhatt PC, Kaithwas G et al (2016) Chemomodulatory effect Melastoma Malabathricum Linn against chemically induced renal carcinogenesis rats via attenuation of inflammation, oxidative stress, and early markers of tumor expansion. Inflammopharmacology 24:233–251.  https://doi.org/10.1007/s10787-016-0276-1 CrossRefPubMedGoogle Scholar
  30. Verma A, Ahmed B, Anwar F et al (2017a) Novel glycoside from Wedelia calendulacea inhibits diethyl nitrosamine-induced renal cancer via downregulating the COX-2 and PEG2 through nuclear factor-κB pathway. Inflammopharmacology.  https://doi.org/10.1007/s10787-017-0310-y Google Scholar
  31. Verma A, Singh D, Anwar F et al (2017b) Triterpenoids principle of Wedelia calendulacea attenuated diethylnitrosamine-induced hepatocellular carcinoma via down-regulating oxidative stress, inflammation and pathology via NF-kB pathway. Inflammopharmacology.  https://doi.org/10.1007/s10787-017-0350-3 Google Scholar
  32. Wang MH, Kao MF, Jang LS (2011) Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device. Rev Sci Instrum 82(6):064302.  https://doi.org/10.1063/1.3594550 CrossRefPubMedGoogle Scholar
  33. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370.  https://doi.org/10.1038/nm.2537 CrossRefPubMedGoogle Scholar
  34. World Health Organization (2012) WHO. World Health Statistics 2012, GenevaGoogle Scholar
  35. World Health Organization, Cancer Research UK (2014) World cancer factsheet. World Heal Organ 2012:4.  https://doi.org/10.1002/ijc.27711 Google Scholar
  36. Yang Y, Sun M, Wang L, Jiao B (2013) HIFs, angiogenesis, and cancer. J Cell Biochem 114:967–974.  https://doi.org/10.1002/jcb.24438 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health SciencesSam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia
  2. 2.Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health SciencesSam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia
  3. 3.Pharmaceutical SciencesS. V. Subharti UniversityMeerutIndia

Personalised recommendations