Advertisement

Inflammopharmacology

, Volume 26, Issue 6, pp 1469–1481 | Cite as

Ex vivo immunomodulatory effect of ethanolic extract of propolis during Celiac Disease: involvement of nitric oxide pathway

  • Oussama Medjeber
  • Kahina Touri
  • Hayet Rafa
  • Zineb Djeraba
  • Mourad Belkhelfa
  • Amira Fatima Boutaleb
  • Amina Arroul-Lammali
  • Houda Belguendouz
  • Chafia Touil-Boukoffa
Original Article

Abstract

Celiac Disease (CeD) is a chronic immune-mediated enteropathy, in which dietary gluten induces an inflammatory reaction, predominantly in the duodenum. Propolis is a resinous hive product, collected by honeybees from various plant sources. Propolis is well-known for its anti-inflammatory, anti-oxidant and immunomodulatory effects, due to its major compounds, polyphenols and flavonoids. The aim of our study was to assess the ex vivo effect of ethanolic extract of propolis (EEP) upon the activity and expression of iNOS, along with IFN-γ and IL-10 production in Algerian Celiac patients. In this context, PBMCs isolated from peripheral blood of Celiac patients and healthy controls were cultured with different concentrations of EEP. NO production was measured using the Griess method, whereas quantitation of IFN-γ and IL-10 levels was performed by ELISA. Inducible nitric oxide synthase (iNOS) expression, NFκB and pSTAT-3 activity were analyzed by immunofluorescence assay. Our results showed that PBMCs from Celiac patients produced high levels of NO and IFN-γ compared with healthy controls (HC). Interestingly, EEP reduced significantly, NO and IFN-γ levels and significantly increased IL-10 levels at a concentration of 50 µg/mL. Importantly, EEP downmodulated the iNOS expression as well as the activity of NFκB and pSTAT-3 transcription factors. Altogether, our results highlight the immunomodulatory effect of propolis on NO pathway and on pro-inflammatory cytokines. Therefore, we suggest that propolis may constitute a potential candidate to modulate inflammation during Celiac Disease and has a potential therapeutic value.

Keywords

Celiac Disease Propolis Nitric oxide pathway Inflammation Cytokines Immunomodulation 

Notes

Acknowledgements

The authors would like to thank the beekeeper Mohamed Kacioui, Dr. Belanteur (Central laboratory, Nafissa Hamoud University Hospital, Algiers, Algeria), Dr. Nassima Behairi (USTHB, Algiers, Algeria), Sarra Benkhelifa (USTHB, Algiers, Algeria) and Fayçal Medjeber (Spectrol Lab, Algeria) for their technical assistance.

Funding

This work was supported by national thematic research agency in development health science (ATRSS, ex ANDRS), project code N°43-ANDRS-2011.

Compliance with ethical standards

Disclosure statement

The authors report no declarations of interest.

References

  1. Arroul-Lammali A, Rahal F, Chetouane R, Djeraba Z, Medjeber O, Ladjouze-Rezig A, Touil-Boukoffa C (2017) Ex vivo all-trans retinoic acid modulates NO production and regulates IL-6 effect during rheumatoid arthritis: a study in Algerian patients. Immunopharmacol Immunotoxicol 39:87–96.  https://doi.org/10.1080/08923973.2017.1285919 CrossRefPubMedGoogle Scholar
  2. Bankova VS, Castro SLd, Marcucci MC (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31:3–15CrossRefGoogle Scholar
  3. Bankova V et al (2016) Standard methods for Apis mellifera propolis research. J Apic Res.  https://doi.org/10.1080/00218839.2016.1222661 CrossRefGoogle Scholar
  4. Beckett CG, Dell’Olio D, Shidrawi RG, Rosen-Bronson S, Ciclitira PJ (1999) Gluten-induced nitric oxide and pro-inflammatory cytokine release by cultured coeliac small intestinal biopsies. Eur J Gastroenterol Hepatol 11:529–535CrossRefGoogle Scholar
  5. Belguendouz H et al (2011) Interferon-gamma and nitric oxide production during Behcet uveitis: immunomodulatory effect of interleukin-10. J Interferon Cytokine Res 31:643–651.  https://doi.org/10.1089/jir.2010.0148 CrossRefPubMedGoogle Scholar
  6. Belkhelfa M et al (2014) IFN-gamma and TNF-alpha are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res 34:839–847.  https://doi.org/10.1089/jir.2013.0085 CrossRefPubMedGoogle Scholar
  7. Bianchi ML, Bardella MT (2008) Bone in celiac disease. Osteoporos Int 19:1705–1716.  https://doi.org/10.1007/s00198-008-0624-0 CrossRefPubMedGoogle Scholar
  8. Bjorck S, Lindehammer SR, Fex M, Agardh D (2015) Serum cytokine pattern in young children with screening detected coeliac disease. Clin Exp Immunol 179:230–235.  https://doi.org/10.1111/cei.12454 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blonska M, Bronikowska J, Pietsz G, Czuba ZP, Scheller S, Krol W (2004) Effects of ethanol extract of propolis (EEP) and its flavones on inducible gene expression in J774A.1 macrophages. J Ethnopharmacol 91:25–30.  https://doi.org/10.1016/j.jep.2003.11.011 CrossRefPubMedGoogle Scholar
  10. Boufadi YM et al (2014) Characterization and antioxidant properties of six Algerian propolis extracts: ethyl acetate extracts inhibit myeloperoxidase activity. Int J Mol Sci 15:2327–2345.  https://doi.org/10.3390/ijms15022327 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brasier AR (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86:211–218.  https://doi.org/10.1093/cvr/cvq076 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheikna Z et al. (2010) Polyphenols Content, Antioxidant and Antimicrobial Activities of Ampelocissus grantii (Baker) Planch. (Vitaceae): A Medicinal Plant from Burkina Faso vol 6.  https://doi.org/10.3923/ijp.2010.880.887 CrossRefGoogle Scholar
  13. Christel Quettier-Deleu BG, Dine Thierry, Cazin Jean-Claude, Bailleul François, Brunet Claude, Luyckx Michel, Vasseur Jacques, Cazin Micheline, Trotin Francis (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72:35–42CrossRefGoogle Scholar
  14. Cottica S, Sawaya A, N Eberlin M, Franco S, Zeoula L, Visentainer J (2011) Antioxidant activity and composition of propolis obtained by different methods of extraction vol 22.  https://doi.org/10.1590/s0103-50532011000500016 CrossRefGoogle Scholar
  15. de Sousa JR, de Sousa RPM, de Souza Aarao TL, Dias LB Jr, Oliveira Carneiro FR, Simoes Quaresma JA (2017) Response of iNOS and its relationship with IL-22 and STAT3 in macrophage activity in the polar forms of leprosy. Acta Trop 171:74–79.  https://doi.org/10.1016/j.actatropica.2017.03.016 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dey P, Panga V, Raghunathan S (2016) PLoS One. A cytokine signalling network for the regulation of inducible nitric oxide synthase expression in rheumatoid arthritis 11:e0161306.  https://doi.org/10.1371/journal.pone.0161306 CrossRefGoogle Scholar
  17. Djeraba Z, Boumedine K, Arroul-Lammali A, Otmani F, Belguendouz H, Touil-Boukoffa C (2014) Ex vivo immunomodulatory effect of all-trans-retinoic acid during Behcet’s disease: a study in Algerian patients. Immunopharmacol Immunotoxicol 36:78–86.  https://doi.org/10.3109/08923973.2013.873048 CrossRefPubMedGoogle Scholar
  18. Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ (2004) Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clin Exp Immunol 135:64–73CrossRefGoogle Scholar
  19. Esposito G et al (2007) Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease. Gastroenterology 133:918–925.  https://doi.org/10.1053/j.gastro.2007.06.009 CrossRefPubMedGoogle Scholar
  20. Henshaw FR et al (2014) Topical application of the bee hive protectant propolis is well tolerated and improves human diabetic foot ulcer healing in a prospective feasibility study. J Diabetes Complic 28:850–857.  https://doi.org/10.1016/j.jdiacomp.2014.07.012 CrossRefGoogle Scholar
  21. Holtmeier W, Caspary WF (2006) Celiac disease. Orphanet J Rare Dis 1:3.  https://doi.org/10.1186/1750-1172-1-3 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Horvath C, Darnell JJ (1997) The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr Opin Cell Biol 9:233–239CrossRefGoogle Scholar
  23. Ignarro LJ (2010) Nitric oxide: biology and pathobiology. Elsevier, AmsterdamGoogle Scholar
  24. Khayyal MT, el-Ghazaly MA, el-Khatib AS, Hatem AM, de Vries PJ, el-Shafei S, Khattab MM (2003) A clinical pharmacological study of the potential beneficial effects of a propolis food product as an adjuvant in asthmatic patients. Fundam Clin Pharmacol 17:93–102CrossRefGoogle Scholar
  25. Lahat N, Karban A, Gerstein R, Kinarty A, Lerner A (1999) Cytokine profile in Coeliac Disease. Scand J Immunol 49:441–446CrossRefGoogle Scholar
  26. Leon F, Sanchez L, Camarero C, Roy G (2005) Cytokine production by intestinal intraepithelial lymphocyte subsets in celiac disease. Dig Dis Sci 50:593–600.  https://doi.org/10.1007/s10620-005-2480-5 CrossRefPubMedGoogle Scholar
  27. Lirdprapamongkol K et al (2013) Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int J Oncol 43:329–337.  https://doi.org/10.3892/ijo.2013.1926 CrossRefPubMedGoogle Scholar
  28. Mazzarella G (2015) Effector and suppressor T cells in celiac disease. World J Gastroenterol 21:7349–7356.  https://doi.org/10.3748/wjg.v21.i24.7349 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Middleton SJ, Shorthouse M, Hunter JO (1993) Increased nitric oxide synthesis in ulcerative colitis. Lancet (London, England) 341:465–466CrossRefGoogle Scholar
  30. Mujica V et al (2017) The role of propolis in oxidative stress and lipid metabolism: a randomized controlled trial. Evid Based Complement Alternat Med 2017:4272940.  https://doi.org/10.1155/2017/4272940 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Murray IA, Daniels I, Coupland K, Smith JA, Long RG (2002) Increased activity and expression of iNOS in human duodenal enterocytes from patients with celiac disease. Am J Physiol Gastrointest Liver Physiol 283:G319–326.  https://doi.org/10.1152/ajpgi.00324.2001 CrossRefPubMedGoogle Scholar
  32. Murray IA, Bullimore DW, Long RG (2003) Fasting plasma nitric oxide products in coeliac disease. Eur J Gastroenterol Hepatol 15:1091–1095.  https://doi.org/10.1097/01.meg.0000085469.12407.0d CrossRefPubMedGoogle Scholar
  33. Musso A et al (2005) Signal transducers and activators of transcription 3 signaling pathway: an essential mediator of inflammatory bowel disease and other forms of intestinal inflammation. Inflamm Bowel Dis 11:91–98CrossRefGoogle Scholar
  34. Napetschnig J, Wu H (2013) Molecular basis of NF-kappaB signaling. Annu Rev Biophys 42:443–468.  https://doi.org/10.1146/annurev-biophys-083012-130338 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Natarajan K, Singh S, Burke TR, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93:9090–9095CrossRefGoogle Scholar
  36. Nilsen EM et al (1998) Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 115:551–563CrossRefGoogle Scholar
  37. Ningsih FN, Rifa’i M (2017) Propolis action in controlling activated T cell producing TNF-alfa and IFN-gamma in diabetic mice. Turk J Immunol 5.  https://doi.org/10.25002/tji.2017.575
  38. Orsatti CL, Missima F, Pagliarone AC, Sforcin JM (2010) Th1/Th2 cytokines’ expression and production by propolis-treated mice. J Ethnopharmacol 129:314–318.  https://doi.org/10.1016/j.jep.2010.03.030 CrossRefPubMedGoogle Scholar
  39. Orsi RO, SRC Funari, Soares AMVC, Calvi SA, Oliveira SL, Sforcin JM, Bankova V (2000) Immunomodulatory action of propolis on macrophage activation. J Venom Anim Toxins 6(2):205–219.  https://doi.org/10.1590/S0104-79302000000200006 CrossRefGoogle Scholar
  40. Pascual V, Dieli-Crimi R, Lopez-Palacios N, Bodas A, Medrano LM, Nunez C (2014) Inflammatory bowel disease and celiac disease: overlaps and differences. World J Gastroenterol 20:4846–4856.  https://doi.org/10.3748/wjg.v20.i17.4846 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93.  https://doi.org/10.1016/j.niox.2010.04.007 CrossRefPubMedGoogle Scholar
  42. Rafa H et al (2013) IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immunomodulatory effect of retinoic acid. J Interferon Cytokine Res 33:355–368.  https://doi.org/10.1089/jir.2012.0063 CrossRefPubMedGoogle Scholar
  43. Rampertab SD, Mullin GE (eds) (2014) Celiac disease. Clinical gastroenterology, 1 edn. Humana Press, New York.  https://doi.org/10.1007/978-1-4614-8560-5 CrossRefGoogle Scholar
  44. Rashtak S, Murray JA (2012) Review article: coeliac disease, new approaches to therapy. Aliment Pharmacol Ther 35:768–781.  https://doi.org/10.1111/j.1365-2036.2012.05013.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Raso GM, Meli R, Di Carlo G, Pacilio M, Di Carlo R (2001) Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci 68:921–931CrossRefGoogle Scholar
  46. Reiling N, Ulmer AJ, Duchrow M, Ernst M, Flad HD, Hauschildt S (1994) Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. Eur J Immunol 24:1941–1944.  https://doi.org/10.1002/eji.1830240836 CrossRefPubMedGoogle Scholar
  47. Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J (2010) Biology of interleukin-10. Cytokine Growth Factor Rev 21:331–344.  https://doi.org/10.1016/j.cytogfr.2010.09.002 CrossRefPubMedGoogle Scholar
  48. Samadi N, Mozaffari-Khosravi H, Rahmanian M, Askarishahi M (2017) Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: a randomized, double-blind clinical trial. J Integr Med 15:124–134.  https://doi.org/10.1016/s2095-4964(17)60315-7 CrossRefPubMedGoogle Scholar
  49. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189.  https://doi.org/10.1189/jlb.0603252 CrossRefPubMedGoogle Scholar
  50. Sforcin JM (2007) Propolis and the immune system: a review. J Ethnopharmacol 113:1–14.  https://doi.org/10.1016/j.jep.2007.05.012 CrossRefPubMedGoogle Scholar
  51. Song YS, Park EH, Hur GM, Ryu YS, Kim YM, Jin C (2002) Ethanol extract of propolis inhibits nitric oxide synthase gene expression and enzyme activity. J Ethnopharmacol 80:155–161CrossRefGoogle Scholar
  52. Tomazevic T, Jazbec J (2013) A double blind randomised placebo controlled study of propolis (bee glue) effectiveness in the treatment of severe oral mucositis in chemotherapy treated children. Complement Ther Med 21:306–312.  https://doi.org/10.1016/j.ctim.2013.04.002 CrossRefPubMedGoogle Scholar
  53. Toreti VC, Sato HH, Pastore GM, Park YK (2013) Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid Based Complement Alternat Med 2013:697390.  https://doi.org/10.1155/2013/697390 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Uspenskaya ID, Erzutova MV, Korkotashvili LV, Kolesov SA, Shirokova NY (2014) The significance of increased levels of end nitric oxide metabolites in blood serum of children with celiac disease. Bratislava Med J 115:712–717.  https://doi.org/10.4149/bll_2014_138 CrossRefGoogle Scholar
  55. Wadsworth TL, Koop DR (1999) Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem Pharmacol 57:941–949CrossRefGoogle Scholar
  56. Yang H, Dong Y, Du H, Shi H, Peng Y, Li X (2011) Antioxidant compounds from propolis collected in Anhui. China Mol 16:3444–3455.  https://doi.org/10.3390/molecules16043444 CrossRefGoogle Scholar
  57. Zhang J (2007) Yin and yang interplay of IFN-gamma in inflammation and autoimmune disease. J Clin Investig 117:871–873.  https://doi.org/10.1172/jci31860 CrossRefPubMedGoogle Scholar
  58. Ziesche E, Bachmann M, Kleinert H, Pfeilschifter J, Muhl H (2007) The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J Biol Chem 282:16006–16015.  https://doi.org/10.1074/jbc.M611040200 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oussama Medjeber
    • 1
  • Kahina Touri
    • 1
  • Hayet Rafa
    • 1
  • Zineb Djeraba
    • 1
  • Mourad Belkhelfa
    • 1
  • Amira Fatima Boutaleb
    • 2
  • Amina Arroul-Lammali
    • 1
  • Houda Belguendouz
    • 1
  • Chafia Touil-Boukoffa
    • 1
  1. 1.Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological SciencesUniversity of Sciences and Technology Houari Boumediene (USTHB)AlgiersAlgeria
  2. 2.Department of GastroenterologyLamine Debaghine HospitalAlgiersAlgeria

Personalised recommendations