Skip to main content

Advertisement

Log in

TMEM88 mediates inflammatory cytokines secretion by regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway in LX-2 cells

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Recent data have shown that Transmembrane protein 88 (TMEM88), a newly discovered protein localized on the cell membrane, interacts with the PDZ domain of disheveled-1 (Dvl-1) in Xenopus embryos. Indeed, TMEM88 might inhibit the canonical Wnt/β-catenin signaling pathway by competing with LRP5/6 for interaction with Dvl-1. TMEM88 plays a crucial role in regulating human stem cell differentiation and embryonic development. Until recently, the function of TMEM88 has been a matter of debate. In this study, we explore the role of TMEM88 in cytokine secretion and the role of the MAPK and Wnt/β-catenin signaling pathway in tumor necrosis factor-alpha (TNF-α)-induced TMEM88 expression in LX-2 cells. We demonstrated that overexpression of TMEM88 results in an upregulation of IL-6 and IL-1β secretion. On the other hand, knockdown of TMEM88 by transfecting siRNA decreased IL-6 and IL-1β secretion in LX-2 cells. Meanwhile, the results showed that TMEM88 silencing could increase the expression levels of canonical Wnt/β-catenin accompanied with upregulated phosphorylation of wnt3a, wnt10b and β-catenin protein levels in response to TNF-α. In conclusion, these results indicated that TMEM88 plays a significant role in TNF-α-enhanced cytokine (IL-6 and IL-1β) secretion of LX-2 cells via regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen IC (2011) A NOD to zebrafish models of inflammatory bowel disease pathogenesis. Dis Models Mech 4(6):711–712

    Article  CAS  Google Scholar 

  • Cao Q, Mak KM, Ren C, Lieber CS (2004) Leptin stimulates tissue inhibitor of metalloproteinase-1 in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependant MAPK pathways. J Biol Chem 279(6):4292–4304

    Article  CAS  Google Scholar 

  • Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K et al (2008) Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 294(1):G39–G49

    Article  CAS  Google Scholar 

  • de Leon M, Cardenas H, Vieth E, Emerson R, Segar M, Liu Y et al (2016) Transmembrane protein 88 (TMEM88) promoter hypomethylation is associated with platinum resistance in ovarian cancer. Gynecol Oncol 142(3):539–547

    Article  CAS  Google Scholar 

  • Fan GW, Zhang Y, Jiang X, Zhu Y, Wang B, Su L et al (2013) Anti-inflammatory activity of baicalein in LPS-stimulated RAW264.7 macrophages via estrogen receptor and NF-kappaB-dependent pathways. Inflammation 36(6):1584–1591

    Article  CAS  Google Scholar 

  • Ge WS, Wang YJ, Wu JX, Fan JG, Chen YW, Zhu L (2014) Beta-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/beta-catenin signaling inhibits hepatic stellate cell activation. Mol Med Rep 9(6):2145–2151

    Article  CAS  Google Scholar 

  • Jiang F, Parsons CJ, Stefanovic B (2006) Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol 45(3):401–409

    Article  CAS  Google Scholar 

  • Jiao J, Friedman SL, Aloman C (2009) Hepatic fibrosis. Curr Opin Gastroenterol 25(3):223–229

    Article  Google Scholar 

  • Kim Y, Fiel MI, Albanis E, Chou HI, Zhang W, Khitrov G et al (2012) Anti-fibrotic activity and enhanced interleukin-6 production by hepatic stellate cells in response to imatinib mesylate. Liver Int 32(6):1008–1017

    Article  CAS  Google Scholar 

  • Kisseleva T, Brenner DA (2011) Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol 25(2):305–317

    Article  CAS  Google Scholar 

  • Koppula S, Kim WJ, Jiang J, Shim DW, Oh NH, Kim TJ et al (2013) Carpesium macrocephalum attenuates lipopolysaccharide-induced inflammation in macrophages by regulating the NF-kappaB/IkappaB-alpha, Akt, and STAT signaling pathways. Am J Chin Med 41(4):927–943

    Article  Google Scholar 

  • Kordes C, Sawitza I, Haussinger D (2008) Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochem Biophys Res Commun 367(1):116–123

    Article  CAS  Google Scholar 

  • Lee HJ, Finkelstein D, Li X, Wu D, Shi DL, Zheng JJ (2010) Identification of transmembrane protein 88 (TMEM88) as a dishevelled-binding protein. J Biol Chem 285(53):41549–41556

    Article  CAS  Google Scholar 

  • Lee YA, Wallace MC, Friedman SL (2015) Pathobiology of liver fibrosis: a translational success story. Gut 64(5):830–841

    Article  CAS  Google Scholar 

  • Li W, Zhu C, Chen X, Li Y, Gao R, Wu Q (2011) Pokeweed antiviral protein down-regulates Wnt/beta-catenin signalling to attenuate liver fibrogenesis in vitro and in vivo. Digestive Liver Dis 43(7):559–566

    Article  CAS  Google Scholar 

  • Li X, Wang X, Han C, Wang X, Xing G, Zhou L et al (2013) Astragaloside IV suppresses collagen production of activated hepatic stellate cells via oxidative stress-mediated p38 MAPK pathway. Free Radic Biol Med 60:168–176

    Article  CAS  Google Scholar 

  • Ma ZG, Lv XD, Zhan LL, Chen L, Zou QY, Xiang JQ et al (2016) Human urokinase-type plasminogen activator gene-modified bone marrow-derived mesenchymal stem cells attenuate liver fibrosis in rats by down-regulating the Wnt signaling pathway. World J Gastroenterol 22(6):2092–2103

    Article  CAS  Google Scholar 

  • Mormone E, George J, Nieto N (2011) Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem Biol Interact 193(3):225–231

    Article  CAS  Google Scholar 

  • Palpant NJ, Pabon L, Rabinowitz JS, Hadland BK, Stoick-Cooper CL, Paige SL et al (2013) Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. Development 140(18):3799–3808

    Article  CAS  Google Scholar 

  • Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181–194

    Article  CAS  Google Scholar 

  • Safadi R, Friedman SL (2002) Hepatic fibrosis–role of hepatic stellate cell activation. MedGenMed 4(3):27

    PubMed  Google Scholar 

  • Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D et al (2007) Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Can Res 67(6):2497–2507

    Article  CAS  Google Scholar 

  • Wells RG (2005) The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol 39(4 Suppl 2):S158–S161

    Article  CAS  Google Scholar 

  • Xia Y, Chen J, Cao Y, Xu C, Li R, Pan Y et al (2013) Wedelolactone exhibits anti-fibrotic effects on human hepatic stellate cell line LX-2. Eur J Pharmacol 714(1–3):105–111

    Article  CAS  Google Scholar 

  • Xu L, Hui AY, Albanis E, Arthur MJ, O’Byrne SM, Blaner WS et al (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54(1):142–151

    Article  CAS  Google Scholar 

  • Yu X, Zhang X, Zhang Y, Jiang G, Mao X, Jin F (2015) Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl. Oncotarget 6(28):25034–25045

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yao X (2011) Suppressive effects of YiGanKang, a combination of Chinese herbs, on collagen synthesis in hepatic stellate cell. J Ethnopharmacol 134(3):949–952

    Article  Google Scholar 

  • Zhang X, Yu X, Jiang G, Miao Y, Wang L, Zhang Y et al (2015) Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS. Can Res 75(21):4527–4537

    Article  CAS  Google Scholar 

  • Zhao H, Zhao Y, Jiang G, Zhang X, Zhang Y, Dong Q et al (2015) Dishevelled-3 activates p65 to upregulate p120-catenin transcription via a p38-dependent pathway in non-small cell lung cancer. Mol Carcinog 54(Suppl 1):E112–E121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 81700522, 81470003), the Provincial Natural Science Research Project of Colleges and Universities of Anhui Province (No. KJ2016A348), the fund of Anhui medical university doctoral start research (No. 0601067101), Anhui Medical University early contact research of clinical medicine(2015-ZQKY-47), Guangdong Province Science and Technology Project (2013B021800164), Sichuan Medical Law Research Center(YF16-Y22) and Humanities and Social Science Research Project of Colleges and Universities of Anhui Province (No. SK2016A0482).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Pan, Lx., Ge, Yx. et al. TMEM88 mediates inflammatory cytokines secretion by regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway in LX-2 cells. Inflammopharmacol 26, 1339–1348 (2018). https://doi.org/10.1007/s10787-017-0419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0419-z

Keywords

Navigation