Advertisement

Inflammopharmacology

, Volume 26, Issue 3, pp 817–827 | Cite as

Plant-based chimeric HPV-virus-like particles bearing amyloid-β epitopes elicit antibodies able to recognize amyloid plaques in APP-tg mouse and Alzheimer’s disease brains

  • R. Gonzalez-Castro
  • G. Acero Galindo
  • Y. García Salcedo
  • L. Uribe Campero
  • V. Vazquez Perez
  • M. Carrillo-Tripp
  • G. Gevorkian
  • M. A. Gomez Lim
Original Article

Abstract

The main amyloid-beta (Aβ) variants detected in the human brain are full-length Aβ1–40 and Aβ1–42 peptides; however, a significant proportion of AD brain Aβ consists also of N-terminal truncated/modified species. The majority of the previous immunotherapeutic strategies targeted the N-terminal immunodominant epitope of the full-length Aβ; however, most of the pathological N-truncated forms of Aβ lack this critical B cell epitope. Recently, virus-like particles (VLPs), self-assembled structures with highly ordered repetitive patterns on their surface and capable of inducing robust immune responses, were applied as a promising platform for various antigen expressions. In this study, we expressed in plants two chimeric HPV16 L1 capsid proteins obtained by introduction of the β-amyloid 11–28 epitope (Aβ 11–28) into the h4 helix or into the coil regions of the L1 protein. The Aβ 11–28 epitope was chosen because it is present in the full-length Aβ 1–42 as well as in the truncated/modified amyloid peptide species. After expression, we assembled the chimerical L1/Aβ 11–28 into a VLP in which the Aβ 11–28 epitope is exposed at very high density (360 times) on the surface of the VLP. The chimeric VLPs elicited in mice Aβ-specific antibodies binding to β-amyloid plaques in APP-tg mouse and AD brains. Our study is the first to demonstrate a successful production in plants and immunogenic properties in mice of chimeric HPV16 L1 VLPs bearing Aβ epitope that may be of potential relevance for the development of multivalent vaccines for a multifactorial disease such as AD.

Keywords

Alzheimer disease Virus-like particles Molecular pharming Amyloid-β epitopes Vaccine Antibodies 

Notes

Aknowledgements

The authors thank Martin Estrada, Alejandra Aguilar and Diana E. Zavala for excellent technical assistance and Georgina Diaz Herrera for animal care. Funding was provided by DGAPA-UNAM (201116) to G.G.

References

  1. Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM (1993) The influence of antigen organization on B-cell responsiveness. Science 11:1448–1451CrossRefGoogle Scholar
  2. Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid-β peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat Med 6:916–919CrossRefPubMedGoogle Scholar
  3. Bayer TA, Wirths O (2014) Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol 127:787–801CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C, Strauss CE, Baker D (2001) Rosetta in CASP4: progress in ab initio protein structure prediction. Proteins 45:119–126CrossRefGoogle Scholar
  5. Bonneau R, Strauss CE, Rohl CA, Chivian D, Bradley P, Malmström L, RobertsonT Baker D (2002) De novo prediction of three-dimensional structures for major protein families. J Mol Biol 322:65–78CrossRefPubMedGoogle Scholar
  6. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 31:175–193CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cabrera M, Marquez-Aguirre A, Hernandez-Gutierrez R, Ortiz-Lazareno PC, Chavez-Calvillo G, Carrillo-Tripp M, Silva-Rosales L, Gutierrez-Ortega A (2012) Immune response to a potyvirus with exposed amino groups available for chemical conjugation. Virol J 9:75CrossRefGoogle Scholar
  9. Carrillo-Tripp M, Shepherd CM, Borelli IA, Venkataraman S, Lander G, Natarajan P, Johnson JE, Brooks CL III, Reddy VS (2009) VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucl Acid Res 37:D436–D442CrossRefGoogle Scholar
  10. Chackerian B, Rangel M, Hunter Z, Peabod DS (2006) Virus and virus-like particle-based immunogens for Alzheimer’s disease induce antibody responses against amyloid-β without concomitant T cell responses. Vaccine 24:6321–6331CrossRefPubMedGoogle Scholar
  11. Chakerian B (2010) Virus-like particle based vaccines for Alzheimer disease. Hum Vaccine 6:926–930CrossRefGoogle Scholar
  12. Coconi-Linares N, Ortega-Dávila E, López-González M, García-Machorro J, García-Cordero J, Steinman RM, Cedillo-Barrón L, Gómez-Lim MA (2013) Targeting of envelope domain III protein of DENV type 2 to DEC-205 receptor elicits neutralizing antibodies in mice. Vaccine 31:2366–2371CrossRefPubMedGoogle Scholar
  13. Head E, Pop V, Vasilevko V, Hill M, Saing T, Sarsoza F, Nistor M, Christie LA, Milton S, Glabe C, Barrett E, Cribbs D (2008) A two-year study with fibrillar beta-amyloid (Abeta) immunization in aged canines: effects on cognitive function and brain Abeta. J Neurosci 28:3555–3566CrossRefPubMedGoogle Scholar
  14. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477CrossRefPubMedGoogle Scholar
  15. Hernandez-Zimbron LF, Luna-Muñoz J, Mena R, Vazquez-Ramirez R, Kubli-Gafrias C, Cribbs DH, Manoutcharian K, Gevorkian G (2012) Amyloid-β peptide binds to cytochrome C oxidase subunit 1. PLoS ONE 7:e42344CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucl Acid Res 32:W526–W531CrossRefGoogle Scholar
  17. Kim MC, Song JM, Eunju O, Kwon YM, Lee YJ, Compans RW, Kang SM (2013) Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol Ther 21:485–492CrossRefPubMedGoogle Scholar
  18. Kushnir N, Streatfield SJ, Yusibov V (2012) Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31:58–83CrossRefPubMedGoogle Scholar
  19. Leaver-Fay A, Tyka M, Lewis SM et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Method Enzymol 487:545–574CrossRefGoogle Scholar
  20. Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF, Zheng JB, Seabrook TJ, Louard D, Li D, Selkoe DJ, Palmour RM, Ervin FR (2004) Alzheimer’s disease Aβ vaccine reduces central nervous system Aβ levels in a non-human primate, the Caribbean vervet. Am J Pathol 165:283–297CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li Q, Cao C, Chackerian B, Schiller JT, Gordon M, Ugen KE (2004) Overcoming antigen masking of anti-amyloidbeta antibodies reveals breaking of B cell tolerance by virus-like particles in amyloid beta immunized amyloid precursor protein transgenic mice. BMC Neurosci 5:21CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lua LH, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg AP (2014) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425–440CrossRefPubMedGoogle Scholar
  23. Marsian J, Lomonossoff GP (2016) Molecular pharming—VLPs made in plants. Curr Opin Biotechnol 37:201–216CrossRefPubMedGoogle Scholar
  24. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreyther K (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci USA 82:4245–4249CrossRefPubMedPubMedCentralGoogle Scholar
  25. Matić S, Rinaldi R, Masenga V, Noris E (2011) Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol 11:106CrossRefPubMedPubMedCentralGoogle Scholar
  26. Monsonegro A, Zota V, Karni A, Krieger JI, Bar-Or A, Bitan G (2003) Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. J Clin Investig 112:415–422CrossRefGoogle Scholar
  27. Munch G, Robinson SR (2002) Potential neurotoxic inflammatory responses to Aβ vaccination in humans. J Neural Transm 109:1081–1087CrossRefPubMedGoogle Scholar
  28. Noda-García L, Camacho-Zarco AR, Medina-Ruíz S, Gaytán P, Carrillo-Tripp M, Fülöp V, Barona-Gómez F (2013) Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer. Mol Biol Evol 30:2024–2034CrossRefPubMedGoogle Scholar
  29. Noda-García L, Juárez-Vázquez AL, Ávila-Arcos MC, Verduzco-Castro EA, Montero-Morán G, Gaytán P, Carrillo-Tripp M, Barona-Gómez F (2015) Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)8 isomerase evolutionary intermediates from a diverse metagenome. BMC Evol Biol 15:107–121CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pasqualetti G, Brooks DJ, Edison P (2015) The role of neuroinflammation in dementias. Curr Neurol Neurosci Rep 15:17CrossRefPubMedGoogle Scholar
  31. Paz de la Rosa G, Monroy Garcia A, Mora García ML, Hernández Montes J, Weiss-Steider B, Gomez Lim MA (2009) An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol J 6:2CrossRefPubMedGoogle Scholar
  32. Perez-Garmendia R, Gevorkian G (2013) Pyroglutamate-modified amyloid beta peptides: emerging targets for Alzheimer’s disease immunotherapy. Curr Neuropharmacol 11:491–498CrossRefPubMedPubMedCentralGoogle Scholar
  33. Perez-Garmendia R, Ibarra-Bracamontes V, Vasilevko V, Luna-Muñoz J, Mena R, Govezensky T, Acero G, Manoutcharian K, Cribbs DH, Gevorkian G (2010) Anti-11[E]-pyroglutamate-modified amyloid β antibodies cross-react with other pathological Aβ species: relevance for immunotherapy. J Neuroimmunol 229:248–255CrossRefPubMedPubMedCentralGoogle Scholar
  34. Petrushina I, Tran M, Sadzikava N, Ghochikyan A, Vasilevko V, Agadjanyan MG (2003) Importance of IgG2c isotype in the immune response to beta-amyloid in amyloid precursor protein/transgenic mice. Neurosci Lett 338:5–8CrossRefPubMedGoogle Scholar
  35. Piechotta A, Parthier C, Kleinschmidt M, Gnoth K, Pillot T, Lues I, Demuth HU, Schilling S, Rahfeld JU, Stubbs MT (2017) Structural and functional analyses of pyroglutamate-amyloid-β-specific antibodies as a basis for Azheimer immunotherapy. J Biol Chem 32:345–352Google Scholar
  36. Roher AE, Maarouf CL, Daugs ID, Kokjohn TA, Hunter JM, Sabbagh MN, Beach TG (2011) Neuropathology and amyloid-b spectrum in a bapineuzumab immunotherapy recipient. J Alzheimer Dis 24:315–325CrossRefGoogle Scholar
  37. Russo C, Salis S, Dolcini V, Venezia V, Song XH, Teller JK, Schettini G (2001) Identification of amino-terminally and phosphotyrosine-modified carboxy-terminal fragments of amyloid precursor protein in Alzheiner’s disease and down syndrome brain. Neurobiol Dis 8:173–180CrossRefPubMedGoogle Scholar
  38. Savory J, Herman MM, Ghribi O (2006) Mechanisms of aluminum-induced neurodegeneration in animals: implications for Alzheimer’s disease. J Alzheimer Dis 10:135–144CrossRefGoogle Scholar
  39. Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177CrossRefPubMedPubMedCentralGoogle Scholar
  40. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608CrossRefPubMedPubMedCentralGoogle Scholar
  41. Town T, Tan J, Sansone N, Obregon D, Klein T, Mullan M (2001) Characterization of murine immunoglobulin G antibodies against human amyloid-beta 1-42. Neurosci Lett 307:101–104CrossRefPubMedGoogle Scholar
  42. Tseng BP, Kitazawa M, LaFerla FM (2004) Amyloid beta-peptide: the inside story. Curr Alzheimer Res 1:231–239CrossRefPubMedGoogle Scholar
  43. Uribe-Campero L, Monrroy-Garcia A, Duran-Meza AL, Villagrana-Escareno MV, Ruiz-García J, Hernandez J, Nunez-Palenius HG, Gomez-Lim MA (2015) Plant-based porcine reproductive and respiratory syndrome Virus VLPs induce an immune response in mice. Res Vet Sci 10:7–12Google Scholar
  44. Vandenberghe R, Riviere ME, Caputo A, Sovago J, Maguire RP, Farlos M, Marotta G, Sanchez-Valle R, Scheltens P, Ryan JM, Graf A (2017) Active Aβ immunotherapy CAD106 in Alzheimer’s disease: a phase 2b study. Alzheimer Dement 3:10–22Google Scholar
  45. Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR, Recchia J (1992) Saponin adjuvant enhancement of antigen-specific immune response to an experimental HIV-1 vaccine. J Immunol 148:1519–1525PubMedGoogle Scholar
  46. Zamora E, Handisurya A, Shafti-Keramat S, Borchelt D, Rudow G, Conant K, Cox C, Troncoso JC, Kirnbauer R (2006) Papillomavirus-like particles are an effective platform for amyloid-beta immunization in rabbits and transgenic mice. J Immunol 177:2662–2670CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. Gonzalez-Castro
    • 1
  • G. Acero Galindo
    • 2
  • Y. García Salcedo
    • 1
  • L. Uribe Campero
    • 1
  • V. Vazquez Perez
    • 1
  • M. Carrillo-Tripp
    • 1
  • G. Gevorkian
    • 2
  • M. A. Gomez Lim
    • 1
  1. 1.Centro de Investigación y de Estudios Avanzados del IPN, Unidad IrapuatoIrapuatoMexico
  2. 2.Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM)MexicoMexico

Personalised recommendations