Skip to main content

Advertisement

Log in

Melatonin as an anti-inflammatory agent in radiotherapy

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Radiotherapy is one of the most relevant treatment options for cancer therapy with or without other treatment modalities including immunotherapy, surgery and chemotherapy. Exposure to heavy doses of ionizing radiation during radiotherapy results in short and long term side effects. It appears that many of these side effects are linked to inflammatory responses during treatment or after prolonged use. Inflammation is mediated by various genes and cytokines related to immune system responses caused by massive cell death following radiotherapy. This phenomenon is more obvious, particularly after exposure to clinical doses of radiotherapy. Inflammation is involved in the amplification of acute responses, genomic instability and also long term pathological changes in normal tissues. Moreover, inflammation attenuates responses of the tumor to radiotherapy through some mechanisms such as angiogenesis. Thus, the management of inflammation is one of the most interesting aims in cancer radiotherapy. Melatonin, known as a natural product in the body, has been of much interest for its anti-inflammatory properties. Some studies have proposed melatonin as a novel anti-inflammation agent. This literature review will concentrate on the anti-inflammatory properties of melatonin that may help the management of different inflammatory signaling pathways in both tumor and normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45(1):55–75

    Article  PubMed  Google Scholar 

  • Aghazadeh S et al (2007) Melatonin as a protective agent in spinal cord damage after gamma irradiation. Rep Prac Oncol Radiother 12(2):95–99

    Article  Google Scholar 

  • Andreassen CN, Grau C, Lindegaard JC (2003) Chemical radioprotection: a critical review of amifostine as a cytoprotector in radiotherapy. Semin Radiat Oncol 13:62–72

    Article  PubMed  Google Scholar 

  • Antolín ISAAC et al (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10(8):882–890

    PubMed  Google Scholar 

  • Apetoh L et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Balamurugan K (2016) HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 138(5):1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Bangha E, Elsner P, Kistler GS (1996) Suppression of UV-induced erythema by topical treatment with melatonin (N-acetyl-5-methoxytryptamine). A dose response study. Arch Dermatol Res 288(9):522–526

    Article  CAS  PubMed  Google Scholar 

  • Barker HE et al (2015) The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15(7):409–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskar R et al (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Becciolini A et al (1997) The effects of irradiation at different times of the day on rat intestinal goblet cells. Cell Prolif 30(3–4):161–170

    Article  CAS  PubMed  Google Scholar 

  • Ben-David MA et al (2015) Melatonin for Prevention of Breast Radiation Dermatitis: A Phase II, Prospective, Double-Blind Randomized Trial. Isr Med Assoc J IMAJ 18(3–4):188–192

    Google Scholar 

  • Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6(9):702–713

    Article  CAS  PubMed  Google Scholar 

  • Bertuglia S, Marchiafava PL, Colantuoni A (1996) Melatonin prevents ischemia reperfusion injury in hamster cheek pouch microcirculation. Cardiovasc Res 31(6):947–952

    Article  CAS  PubMed  Google Scholar 

  • Bhatia AL, Manda K (2004) Study on pre-treatment of melatonin against radiation-induced oxidative stress in mice. Environ Toxicol Pharmacol 18(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Bordt SL et al (2001) N1E-115 mouse neuroblastoma cells express mt1 melatonin receptors and produce neurites in response to melatonin. Biochim Et Biophys Acta (BBA) Mol Cell Res 1499(3):257–264

    Article  CAS  Google Scholar 

  • Borek C (2004) Antioxidants and radiation therapy. J Nutr 134(11):3207S–3209S

    CAS  PubMed  Google Scholar 

  • Bower JE et al (2011) Inflammation and behavioral symptoms after breast cancer treatment: do fatigue, depression, and sleep disturbance share a common underlying mechanism? J Clin Oncol 29(26):3517–3522

    Article  PubMed  PubMed Central  Google Scholar 

  • Burdelya LG et al (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320(5873):226–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Vico A et al (2003) Expression of membrane and nuclear melatonin receptor mRNA and protein in the mouse immune system. Cell Mol Life Sci CMLS 60(10):2272–2278

    Article  CAS  PubMed  Google Scholar 

  • Cayli SR et al (2004) Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Eur Spine J 13(8):724–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerutti P, Amstad P (1993) Inflammation and oxidative stress in carcinogenesis. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury. Springer, New York, pp 387–390

    Google Scholar 

  • Chen LD et al (1995) Melatonin’s inhibitory effect on growth of ME-180 human cervical cancer cells is not related to intracellular glutathione concentrations. Cancer Lett 91(2):153–159

    Article  CAS  PubMed  Google Scholar 

  • Choi YW et al (2004) Effects of Radiation Therapy on the Lung: Radiologic Appearances and Differential Diagnosis 1. Radiographics 24(4):985–997

    Article  PubMed  Google Scholar 

  • Chun KS et al (2004) Nitric oxide induces expression of cyclooxygenase-2 in mouse skin through activation of NF-κB. Carcinogenesis 25(3):445–454

    Article  CAS  PubMed  Google Scholar 

  • Ciriaco M et al (2013) Corticosteroid-related central nervous system side effects. J Pharmacol Pharmacother 4(5):94

    Article  CAS  Google Scholar 

  • Colombo J et al (2016) Effects of melatonin on HIF-1alpha and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol Lett 12(1):231–237

    PubMed  PubMed Central  Google Scholar 

  • Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    Article  CAS  PubMed  Google Scholar 

  • Cos S et al (1996) Effects of melatonin on the proliferation and differentiation of human neuroblastoma cells in culture. Neurosci Lett 216(2):113–116

    Article  CAS  PubMed  Google Scholar 

  • Delia P et al (2002) Prevention of radiation-induced diarrhea with the use of VSL# 3, a new high-potency probiotic preparation. Am J Gastroenterol 97(8):2150

    Article  PubMed  Google Scholar 

  • Deng WG et al (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108(2):518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doctrow SR et al (2013) A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J Invest Dermatol 133(4):1088–1096

    Article  CAS  PubMed  Google Scholar 

  • Dörr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61(3):223–231

    Article  PubMed  Google Scholar 

  • Dragicevic N et al (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Dunst J et al (2000) Intermittent use of amifostine during postoperative radiochemotherapy and acute toxicity in rectal cancer patients. Strahlenther Onkol 176(9):416–421

    Article  CAS  PubMed  Google Scholar 

  • Eiró N, Vizoso FJ (2012) Inflammation and cancer. World J Gastrointest Surg 4(3):62–72

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Missiry MA et al (2007) Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf 66(2):278–286

    Article  CAS  PubMed  Google Scholar 

  • Esrefoglu M et al (2006) Ultrastructural clues for the potent therapeutic effect of melatonin on aging skin in pinealectomized rats. Fundam Clin Pharmacol 20(6):605–611

    Article  CAS  PubMed  Google Scholar 

  • Fischer TW et al (2008) Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 17(9):713–730

    Article  CAS  PubMed  Google Scholar 

  • Forrest LM et al (2003) Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br J Cancer 89(6):1028–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foulkes NS, Borjigin J, Snyder SH (1997) Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Trends Neurosci 20(10):487–492

    Article  CAS  PubMed  Google Scholar 

  • Georgakilas AG (2015) Role of the immune system and inflammation in ionizing radiation effects. Cancer Lett 368(2):154

    Article  CAS  PubMed  Google Scholar 

  • Gilad E et al (1998) Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFκB activation. FASEB J 12(9):685–693

    CAS  PubMed  Google Scholar 

  • Gilkes DM, Semenza GL (2013) Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol 9(11):1623–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gitto E et al (2001) Individual and synergistic antioxidative actions of melatonin: studies with vitamin E, vitamin C, glutathione and desferrrioxamine (desferoxamine) in rat liver homogenates. J Pharm Pharmacol 53(10):1393–1401

    Article  CAS  PubMed  Google Scholar 

  • Guney Y et al (2007) Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine. Braz J Med Biol Res 40(10):1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC et al (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29(3):405–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddadi G et al (2013) Radioprotective effect of melatonin on the cervical spinal cord in irradiated rats. Cell J (Yakhteh) 14(4):246

    CAS  Google Scholar 

  • Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27(4):589–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halin C, Detmar M (2008) Inflammation, angiogenesis, and lymphangiogenesis. Methods Enzymol 445:1–25

    Article  CAS  PubMed  Google Scholar 

  • Hekim N et al (2015) Radiation triggering immune response and inflammation. Cancer Lett 368(2):156–163

    Article  CAS  PubMed  Google Scholar 

  • Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027

    Article  CAS  PubMed  Google Scholar 

  • Hill SM et al (2015) Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 22(3):R183–R204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JH et al (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys 33(3):619–626

    Article  CAS  PubMed  Google Scholar 

  • Hovdenak N, Fajardo LF, Hauer-Jensen M (2000) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. Int J Radiat Oncol Biol Phys 48(4):1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Hovdenak N et al (2003) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. Acta Oncol 42(7):741–748

    Article  PubMed  Google Scholar 

  • Hu ZP et al (2013) Melatonin ameliorates vascular endothelial dysfunction, inflammation, and atherosclerosis by suppressing the TLR4/NF-κB system in high-fat-fed rabbits. J Pineal Res 55(4):388–398

    CAS  PubMed  Google Scholar 

  • Huether G (1993) The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia 49(8):665–670

    Article  CAS  PubMed  Google Scholar 

  • Hussein MR et al (2005) Ultrastructural evaluation of the radioprotective effects of melatonin against X-ray-induced skin damage in Albino rats. Int J Exp Pathol 86(1):45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein MR et al (2008) Melatonin and roentgen irradiation-induced acute radiation enteritis in Albino rats: an animal model. Cell Biol Int 32(11):1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Inoue A et al (2001) Radiation pneumonitis in lung cancer patients: a retrospective study of risk factors and the long-term prognosis. Int J Radiat Oncol Biol Phys 49(3):649–655

    Article  CAS  PubMed  Google Scholar 

  • Jang SS et al (2013) Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression. Int J Radiat Biol 89(2):97–105

    Article  CAS  PubMed  Google Scholar 

  • Jardim-Perassi BV et al (2016) Melatonin regulates angiogenic factors under hypoxia in breast cancer cell lines. Anticancer Agents Med Chem 16(3):347–358

    Article  CAS  PubMed  Google Scholar 

  • Jung JI et al (2004) Thoracic Manifestations of Breast Cancer and Its Therapy 1. Radiographics 24(5):1269–1285

    Article  PubMed  Google Scholar 

  • Kaur P, Asea A (2012) Radiation-induced effects and the immune system in cancer. Front Oncol 2:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya H et al (1999) The effect of melatonin on lipid peroxidation during radiotherapy in female rats. Strahlenther Onkol 175(6):285–288

    Article  CAS  PubMed  Google Scholar 

  • Kim BC et al (2001) Melatonin reduces X-ray irradiation-induced oxidative damages in cultured human skin fibroblasts. J Dermatol Sci 26(3):194–200

    Article  CAS  PubMed  Google Scholar 

  • Koc M et al (2003) Melatonin protects rat liver against irradiation-induced oxidative injury. J Radiat Res 44(3):211–215

    Article  CAS  PubMed  Google Scholar 

  • Komaki R et al (2004) Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non–small-cell lung cancer: Report of a randomized comparative trial. Int J Radiat Oncol Biol Phys 58(5):1369–1377

    Article  CAS  PubMed  Google Scholar 

  • Kotler M et al (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24(2):83–89

    Article  CAS  PubMed  Google Scholar 

  • Lan F et al (2014) Serum toll-like receptors are potential biomarkers of radiation pneumonia in locally advanced NSCLC. Int J Clin Exp Pathol 7(11):8087–8095

    PubMed  PubMed Central  Google Scholar 

  • Lauber K et al (2012) Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front Oncol 2:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Sethi G (2010) Targeting transcription factor NF-κB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Et Biophys Acta (BBA) Rev Cancer 2:167–180

    Article  CAS  Google Scholar 

  • Lin R et al (2015) Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis. Oncotarget 6(5):2856

    Article  PubMed  Google Scholar 

  • Lissoni P et al (2001) Anti-angiogenic activity of melatonin in advanced cancer patients. Neuro Endocrinol Lett 22(1):45–47

    CAS  PubMed  Google Scholar 

  • Lorimore SA et al (2001) Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20(48):7085–7095

    Article  CAS  PubMed  Google Scholar 

  • Lugade AA et al (2008) Radiation-induced IFN-γ production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139

    Article  CAS  PubMed  Google Scholar 

  • Mahal HS, Sharma HS, Mukherjee T (1999) Antioxidant properties of melatonin: a pulse radiolysis study. Free Radic Biol Med 26(5):557–565

    Article  CAS  PubMed  Google Scholar 

  • Marozik P et al (2007) Bystander effects induced by serum from survivors of the Chernobyl accident. Exp Hematol 35(4):55–63

    Article  CAS  PubMed  Google Scholar 

  • Marseglia L et al (2014) Melatonin and atopy: role in atopic dermatitis and asthma. Int J Mol Sci 15(8):13482–13493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matuszak Z, Reszka KJ, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radic Biol Med 23(3):367–372

    Article  CAS  PubMed  Google Scholar 

  • Mayo JC et al (2002) Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci CMLS 59(10):1706–1713

    Article  CAS  PubMed  Google Scholar 

  • Mayo JC et al (2005) Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 165(1–2):139–149

    Article  CAS  PubMed  Google Scholar 

  • Meacham LR, Sklar CA, Li S, Liu Q, Gimpel N, Yasui Y, Whitton JA, Stovall M, Robison LL, Oeffinger KC (2009) Diabetes mellitus in long-term survivors of childhood cancer. Arch Inter Med 169 (15):1381

    Article  Google Scholar 

  • Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non–small-cell lung cancer: Pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63(1):5–24

    Article  PubMed  Google Scholar 

  • Meira LB et al (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Investig 118(7):2516–2525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihandoost E et al (2014) Can melatonin help us in radiation oncology treatments? Biomed Res Int 2014:578137. doi:10.1155/2014/578137

    Article  PubMed  PubMed Central  Google Scholar 

  • Min D et al (2002) Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99(12):4592–4600

    Article  CAS  PubMed  Google Scholar 

  • Mohan N et al (1995) The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B. Biochem Mol Biol Int 37(6):1063–1070

    CAS  PubMed  Google Scholar 

  • Mohseni M et al (2012) Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat Res Fundam Mol Mech Mutagen 738–739:19–27

    Article  CAS  Google Scholar 

  • Monobe M et al (2005) Protective effects of melatonin on gamma-ray induced intestinal damage. Int J Radiat Biol 81(11):855–860

    Article  CAS  PubMed  Google Scholar 

  • Movsas B et al (1997) Pulmonary radiation injury. Chest J 111(4):1061–1076

    Article  CAS  Google Scholar 

  • Mukherjee D et al (2014) Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol 232(3):289–299

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Radons J (2012) Radiation, inflammation, and immune responses in cancer. Front Oncol 2:58

    PubMed  PubMed Central  Google Scholar 

  • Najafi M et al (2016) Radiation-induced oxidative stress at out-of-field lung tissues after pelvis irradiation in rats. Cell J (Yakhteh) 18(3):340

    Google Scholar 

  • Nathan C (2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Investig 111(6):769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newhauser WD, Durante M (2011) Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer 11(6):438–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nooshinfar E et al (2016) Melatonin, an inhibitory agent in breast cancer. Breast Cancer 24:1–10

    Google Scholar 

  • Ohnishi S et al (2013) DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid Med Cell Longev 2013:387014. doi:10.1155/2013/387014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fardid R, Salajegheh A, Mosleh-Shirazi MA, Sharifzadeh S, Okhovat MA, Najafi M, Rezaeyan A, Abaszadeh A (2017) Melatonin ameliorates the production of COX-2, iNOS, and the formation of 8-OHdG in non-targeted lung tissue after pelvic irradiation. Cell J 19(2):324–331

    PubMed  PubMed Central  Google Scholar 

  • Okatani Y et al (2001) Melatonin stimulates glutathione peroxidase activity in human chorion. J Pineal Res 30(4):199–205

    Article  CAS  PubMed  Google Scholar 

  • Onal C et al (2011) Protective effects of melatonin and octreotide against radiation-induced intestinal injury. Dig Dis Sci 56(2):359–367

    Article  CAS  PubMed  Google Scholar 

  • Ong ZY et al (2010) Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis. Radiat Oncol 5(1):1

    Article  CAS  Google Scholar 

  • Ortiz F et al (2015) Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res 58(1):34–49

    Article  CAS  PubMed  Google Scholar 

  • Pablos MI et al (1995) Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J Pineal Res 19(3):111–115

    Article  CAS  PubMed  Google Scholar 

  • Pablos MI et al (1998) Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 32(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Peddi PF, Shatsky RA, Hurvitz SA (2014) Noninfectious pneumonitis with the use of mTOR inhibitors in breast cancer. Cancer Treat Rev 40(2):320–326

    Article  CAS  PubMed  Google Scholar 

  • Perez-Sala D, Lamas S (2001) Regulation of cyclooxygenase-2 expression by nitric oxide in cells. Antioxid Redox Signal 3(2):231–248

    Article  CAS  PubMed  Google Scholar 

  • Philip B et al (2013) HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis 34(8):1699–1707

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Burkhardt S (2002) Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 123(8):1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Reits EA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaeyan A et al (2016a) Evaluating radioprotective effect of hesperidin on acute radiation damage in the lung tissue of rats. J Biomed Phys Eng 6(3):165–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaeyan A et al (2016b) Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue. J Med Phys Assoc Med Phys India 41(3):182

    Google Scholar 

  • Rezvani M (2003) Treatment of radiation-induced normal tissue lesions. Iran J Radiat Res 1(2):63–78

    Google Scholar 

  • Roach MIII et al (1995) Radiation pneumonitis following combined modality therapy for lung cancer: analysis of prognostic factors. J Clin Oncol 13(10):2606–2612

    Article  PubMed  Google Scholar 

  • Robbins MEC, Zhao W (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 80(4):251–259

    Article  CAS  PubMed  Google Scholar 

  • Rödel F et al (2012) Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose X-irradiation. Front Oncol 2:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez C et al (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Rosiello RA, Merrill WW (1990) Radiation-induced lung injury. Clin Chest Med 11(1):65–71

    CAS  PubMed  Google Scholar 

  • Roth JA, Rabin R, Agnello K (1997) Melatonin suppression of PC12 cell growth and death. Brain Res 768(1–2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Rubio S et al (2007) Inhibition of proliferation and induction of apoptosis by melatonin in human myeloid HL-60 cells. J Pineal Res 42(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Sainz RM et al (2003a) Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 60(7):1407–1426

    Article  CAS  PubMed  Google Scholar 

  • Sainz RM et al (2003b) Antioxidant activity of melatonin in Chinese hamster ovarian cells: changes in cellular proliferation and differentiation. Biochem Biophys Res Commun 302(3):625–634

    Article  CAS  PubMed  Google Scholar 

  • Schaue D, Kachikwu EL, McBride WH (2012) Cytokines in radiobiological responses: a review. Radiat Res 178(6):505–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekine I et al (2006) Retrospective analysis of steroid therapy for radiation-induced lung injury in lung cancer patients. Radiother Oncol 80(1):93–97

    Article  CAS  PubMed  Google Scholar 

  • Şener G et al (2003) Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rats. Life Sci 74(5):563–572

    Article  PubMed  CAS  Google Scholar 

  • Serin M et al (2007) The histopathological evaluation of the effectiveness of melatonin as a protectant against acute lung injury induced by radiation therapy in a rat model. Int J Radiat Biol 83(3):187–193

    Article  CAS  PubMed  Google Scholar 

  • Sewerynek E et al (1995) Oxidative damage in the liver induced by ischemia-reperfusion: protection by melatonin. Hepatogastroenterology 43(10):898–905

    Google Scholar 

  • Shakhov AN et al (2012) Prevention and mitigation of acute radiation syndrome in mice by synthetic lipopeptide agonists of Toll-like receptor 2 (TLR2). PLoS One 7(3):e33044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiao SL, Coussens LM (2010) The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplas 15(4):411–421

    Article  Google Scholar 

  • Shirazi A (2011) Radioprotective effect of melatonin in reducing oxidative stress in rat lenses. Radiother Oncol 98:S21

    Article  Google Scholar 

  • Shirazi A, Mahdavi SR, Trott KR (2004) Radiation myelopathy: a radiobiological review. Rep Pract Oncol Radiother 9(4):119–127

    Article  Google Scholar 

  • Shirazi A et al (2005) Short-term changes in prostacyclin secretory profile of irradiated rat cervical spinal cord. Prostaglandins Leukot Essent Fat Acids 72(5):373–378

    Article  CAS  Google Scholar 

  • Shirazi A et al (2010) Evaluation of melatonin for modulation of apoptosis-related genes in irradiated cervical spinal cord. Int J Low Radiat 7(6):436–445

    Article  CAS  Google Scholar 

  • Shirazi A et al (2013a) Radio-protective effects of melatonin against irradiation-induced oxidative damage in rat peripheral blood. Phys Med 29(1):65–74

    Article  PubMed  Google Scholar 

  • Shirazi A et al (2013b) Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage. Cell 14(4):294–297

    Google Scholar 

  • Slominski A, Pruski D (1993) Melatonin inhibits proliferation and melanogenesis in rodent melanoma cells. Exp Cell Res 206(2):189–194

    Article  CAS  PubMed  Google Scholar 

  • Slominski A et al (2008) Melatonin in the skin: synthesis, metabolism and functions. Trends Endocrinol Metab 19(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Somosy Z et al (2002) Morphological aspects of ionizing radiation response of small intestine. Micron 33(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Sprung CN et al (2015) Immunological markers that predict radiation toxicity. Cancer Lett 368(2):191–197

    Article  CAS  PubMed  Google Scholar 

  • Stasica P, Ulanski P, Rosiak JM (1998) Melatonin as a hydroxyl radical scavenger. J Pineal Res 25(1):65–66

    Article  CAS  PubMed  Google Scholar 

  • Tan DX et al (2003) Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res 34(4):249–259

    Article  CAS  PubMed  Google Scholar 

  • Tan DX et al (2007) One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42(1):28–42

    Article  CAS  PubMed  Google Scholar 

  • Tan DX et al (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54(2):127–138

    Article  CAS  PubMed  Google Scholar 

  • Tan DX et al (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20(10):18886–18906

    Article  CAS  PubMed  Google Scholar 

  • Tavassoli A, Ghasemi D (2015) Radioprotective effect of melatonin on radiation-induced lung injury and lipid peroxidation in rats. Cell J 17(1):111

    PubMed  PubMed Central  Google Scholar 

  • Tsoutsou PG, Koukourakis MI (2006) Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 66(5):1281–1293

    Article  PubMed  Google Scholar 

  • Wang Y et al (2004) Activation of nuclear factor κB in vivo selectively protects the murine small intestine against ionizing radiation-induced damage. Cancer Res 64(17):6240–6246

    Article  CAS  PubMed  Google Scholar 

  • Yang QH et al (2007) Antiproliferative effects of melatonin on the growth of rat pituitary prolactin-secreting tumor cells in vitro. J Pineal Res 42(2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Yi C et al (2014) Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PLoS One 9(7):e99943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yilmaz S, Yilmaz E (2006) Effects of melatonin and vitamin E on oxidative–antioxidative status in rats exposed to irradiation. Toxicology 222(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Ying SW, Niles LP, Crocker C (1993) Human malignant melanoma cells express high-affinity receptors for melatonin: antiproliferative effects of melatonin and 6-chloromelatonin. Eur J Pharmacol Mol Pharmacol 246(2):89–96

    Article  CAS  Google Scholar 

  • Zhang S et al (2013) Melatonin inhibits cell growth and migration, but promotes apoptosis in gastric cancer cell line, SGC7901. Biotech Histochem 88(6):281–289

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Robbins MEC (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Tehran University of Medical Sciences. Grant number 33480.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Shirazi or E. Motevaseli.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M., Shirazi, A., Motevaseli, E. et al. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacol 25, 403–413 (2017). https://doi.org/10.1007/s10787-017-0332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0332-5

Keywords

Navigation