Skip to main content

Green tea polyphenols and their potential role in health and disease

Abstract

There is a growing body of evidence that plant polyphenols such as resveratrol, anthocyanins, catechins, and terpenes like taxol are effectively used in the treatment of chronic conditions including cancer, Alzheimer, Parkinsonism, diabetes, aging, etc. The link between oxidative stress and inflammation is well accepted. Thus, the mechanism of action of these natural products is partly believed to be through their significant antioxidant properties. The main constituent of green tea, with clinical significance, is epigallocatechin gallate (EGCG). It has been associated with antitumor, anti-Alzheimer, and anti-aging properties, improve redox status at the tissue level possibly preventing system level structural damage. This review focuses on EGCG and its potential therapeutic role in health and disease.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al–Bloushi S, Safer AM, Afzal M, Mousa SA (2009) Green tea modulates reserpine toxicity in animal models. J Toxicol Sci 34:77–87

    PubMed  Article  Google Scholar 

  2. Al-Hazzani AA, Alshatwi AA (2011) Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem Toxicol 49:3281–3286

    CAS  PubMed  Article  Google Scholar 

  3. Bastienetto S, Yao ZX, Quirion Papadopoulos V (2006) Neuroprotective effects green and black teas and their catechin gallate esters against beta-amyloid induced toxicity. Eur J Neurosci 23:55–64

    Article  Google Scholar 

  4. Bastos C, Barros L, Duenas M, Calhelha RC et al (2015) Chemical characterization and bioactive properties of Prunus avium L:the widely studied fruits and the unexpected stems. Food Chem 173:1045–1053

    CAS  PubMed  Article  Google Scholar 

  5. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Betzaida MS, Vera T (2013) Mortality from Alzheimer’s disease in the United States: Data for 2000 and 2010 NCHS Data Brief No. 116 March, 2013, Center for Disease Control and Prevention, National Center for Health Statistics

  7. Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11(5):705–719

    CAS  PubMed  Google Scholar 

  8. Bonifati VI, Meco G (1999) New, selective catechol-O-methyltransferase inhibitors as therapeutic agents in Parkinson’s disease. Pharmacol Therap 81(1):1–36

    CAS  Article  Google Scholar 

  9. Borgwardt S, Hammann F, Scheffler K, Kreuter M, Drewe J, Beglinger C (2012) Neural effect of green tea extract on dorsolateral prefrontal cortex. Eur J Clin Nutr 66(11):1187–1192

    CAS  PubMed  Article  Google Scholar 

  10. Chan H, Qu Z, Fu L, Dong P, Zhang X (2009) Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J Food Sci 74(6):C468–C474

    Google Scholar 

  11. Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738

    PubMed  Article  Google Scholar 

  12. Chen C, Yu R, Owuor ED, Kong AN (2000) Activation of antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 23:605–612

    CAS  PubMed  Article  Google Scholar 

  13. Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP (2011) EGCG, green tea polyphenols and their synthetic analogs and pro-drugs for human cancer prevention and treatment. Adv Clin Chem 53:155–177

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Chen CC, Hsieh DS, Huang KJ, Chan YL, Hong PD, Yeh MK, Wu CJ (2014a) Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des Dev Ther 8:459–474. doi:10.2147/DDDT.S58414

    CAS  Google Scholar 

  15. Chen L, Ye HL, Zhang G, Yao WM, Chen XZ, Zhang FC, Liang G (2014b) Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells. PLoS One 9(1):e85771. doi:10.1371/journal.pone.0085771

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  16. Choung YH, Choi SJ, Joo JS, Lee JB, Lee HK, Lee SJ (2011) Green tea prevents down-regulation of gap junction intercellular communication in human keratinocytes treated with PMA. Eur Arch Oto-rhinol 268(6):885–892

    Article  Google Scholar 

  17. Deleu D, Northway MG, Hanssens Y (2002) Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet 41:261–309

    CAS  PubMed  Article  Google Scholar 

  18. Dragicevic N, Smith A, Lin X, Yuan F, Copes N, Delic V, Tan J, Cao C, Shytle RD, Bradshaw PC (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid induced mitochondrial dysfunction. J Alzheimer’s Dis 26(3):507–521

    CAS  Google Scholar 

  19. Ellis LZ, Liu W, Luo Y, Okamoto M, Qu D, Dunn JH, Fujita M (2011) Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1beta secretion. Biochem Biophys Res Commun 414(3):551–556

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Farzael MH, Rahimi R, Abdollahi M (2015) The role of dietary polyphenols in the management of inflammatory bowel disease. Curr Pharm Biotechnol 16(3):196–210

    Article  CAS  Google Scholar 

  21. Ferreira N, Saraiva M, Almeida M (2011) Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett 585:2424–2430

    CAS  PubMed  Article  Google Scholar 

  22. Frezza M, Schmitt S, Dou QP (2011) Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr Top Med Chem 11(23):2888–2905

    CAS  PubMed  Article  Google Scholar 

  23. Formagio A, Ramos D, Vieira M et al (2015) Phenolic compounds of Hibiscus sabdariffa and influence of organic residues on its antioxidant and antitumoral properties. Braz J Biol 75(1):69–75

    CAS  PubMed  Article  Google Scholar 

  24. Gao Y, Li W, Jia L, Li B, Chen YC, Tu Y (2013) Enhancement of (-)-epigallocatechin-3-gallate and theaflavin-3-3′-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Biochem Biophys Res Comm 438(2):370–374

    CAS  PubMed  Article  Google Scholar 

  25. Guo B, Gao J, Zhan J, Zhnag H (2015) Kindlin-2 interacts with and stabilizes EGFR and is required for EGF-induced breast cancer cell migration. Cancer Lett 361(2):271–281

    CAS  PubMed  Article  Google Scholar 

  26. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    CAS  PubMed  Article  Google Scholar 

  27. Haratifar S, Meckling KA, Corredig M (2014) Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. J Dairy Sci 97(2):672–678

    CAS  PubMed  Article  Google Scholar 

  28. He Y, Cui J, Lee JC, Ding S, Chalimoniuk M, Simonyi A, Sun AY, Gu Z, Weisman GA, Wood WG, Sun GY (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase mediated ROS production: protective effects of green tea (-)-epigallocatechin-3-gallate. ASN Neurochem 3(1):e00050. doi:10.1042/AN20100025

    Google Scholar 

  29. He X, Li J, Zhao W, Liu R, Zhang L, King X (2015) Chemical fingerprint analysis for quality control and identification of ziyang green tea by HPLC. Food Chem 171:405–411

    CAS  PubMed  Article  Google Scholar 

  30. Higuchi A, Yonemitsu K, Koreeda A, Tsunenari S (2003) Inhibitory activity of epigallocatechin gallate (EGCg) in paraquat-induced microsomal lipid peroxidation—a mechanism of protective effects of EGCG against paraquat toxicity. Toxicol 183:143–149

    CAS  Article  Google Scholar 

  31. Ho L, Sharma N, Blackman L, Festa E, Reddy G, Pasinetti GM (2005) From proteomics to biomarker discovery in Alzheimer’s disease. Brain Res Rev 48(2):360–369

    CAS  PubMed  Article  Google Scholar 

  32. Hong BE, Fujimura Y, Yamada K, Tachibana H (2010) TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. J Immu 185(1):33–45

    Article  CAS  Google Scholar 

  33. Howes JB, de Souza PL, West L, Huang LJ, Howes LG (2011) Pharmacokinetics of phenoxodiol, a novel isoflavone following intravenous administration to patients with advanced cancer. BMC Clin Phramacol. doi:10.1186/1472-6904-11-1

    Google Scholar 

  34. Huang W, Ding L, Huang Q et al (2010) Carbonyl reductase 1 as a novel target of (-)-epigallocatechin gallate against hepatocellular carcinoma. Hepatol 52(2):703–714

    CAS  Article  Google Scholar 

  35. Huang CC, Lee WT, Tsai ST et al (2014) Tea consumption and risk of head and neck cancer. PLoS One 9(5):e96507. doi:10.1371/journal.pone.0096507.eCollection

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  36. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1):91–104

    CAS  PubMed  Article  Google Scholar 

  37. Khan MK, Zill Huma, Dangles O (2014) A comprehensive review on flavones, the major citrus polyphenols. J Food Comp Anal 33(1):85–104

    CAS  Article  Google Scholar 

  38. Kim JY, Chol HE, Lee HH et al (2015) Resveratrol analogue (E)-8-acetoxy-2-[2-(3,4-diacetoxyphenyl)ethenyl]quinazoline induces G(2)M cell cycle arrest through the activation of ATM/ATR in human cervical carcinoma HeLa cells. Oncol Rep 33(5):2639–2647

    PubMed  Google Scholar 

  39. Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H, Tsuji I (2006) Green tea consumption and cognition function: a cross sectional study from the Ysurugaya Project1. Am J Clin Nutr 83(2):355–361

    CAS  PubMed  Google Scholar 

  40. Lambert JD, Sang S, Hong J, Yang CS (2010) Anticancer and anti-inflammatory effects of cysteine metabolites of the green tea polyphenol, (-)-epigallocatechin-3-gallate. J Agric Food Chem 58(18):10016–10019

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Lamoral-Theys D, Pottier L, Dufrasne F, Neve J, Dubois J, Kornienko A, Kiss R, Ingrassia L (2010) Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr Med Chem 17(9):812–825

    CAS  PubMed  Article  Google Scholar 

  42. Lee JH, Kishikawa M, Kumazoe M, Yamada K, Tachibana H (2010) Vitamin A enhances antitumor effect of a green tea polyphenol on melanoma by upregulating the polyphenol sensing molecule 67-kDa laminin receptor. PLoS One 5(6):e11051

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  43. Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    CAS  PubMed  Article  Google Scholar 

  44. Levites Y, Amit T, Youdim MB, Mandel S (2002a) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin-3-gallate neuroprotective action. J Biol Chem 277:30574–30580

    CAS  PubMed  Article  Google Scholar 

  45. Levites Y, Youdim MBH, Maor G, Mandel S (2002b) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63:21–29

    CAS  PubMed  Article  Google Scholar 

  46. Li W, Wu JX, Tu YY (2010) Synergistic effects of tea polyphenols and ascorbic acid on human lung adenocarcinoma SPC-A-1 cells. J Zhejiang University Sci B 11(6):458–464. doi:10.1631/jzus.B0900355

    CAS  Article  Google Scholar 

  47. Li X, Feng H, Chen B, Ng SS, Chen WN, Chan V (2011) Epigallocatechin-3-gallate induced modulation of cell adhesion and migration on thermosensitive poly(N-isopropylacrylamide). J Biomed Mater Res A 98(3):450–460

    PubMed  Article  CAS  Google Scholar 

  48. Li JJ, Gu QH, Li M, Yang HP, Cao LM, Hu CP (2013) Role of Ku70 and Bax in epigallocatechin-3-gallate-induced apoptosis of A549 cells in vivo. Oncol Lett 5(1):101–106

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Liatsos GD, Moulakakis A, Ketikoglou I, Klonari S (2010) Possible green tea-induced thrombotic thrombocytopenic purpura. Am J Health-Sys Phram 67(7):531–534

    Article  Google Scholar 

  50. Lin Y, Xia X, Yao R, Ni L, Hu J, Guo W, Zhu B (2014) Synthesis and in vitro biological evaluation of hybrids from tetrahydro-beta-carboline and hydroxycinnamic acid as antitumor carcinoma agents. Chem Phram Bull (Tokyo) 62(4):343–349

    CAS  Article  Google Scholar 

  51. Liou HH, Chen RC, Chen TH, Tsai YF, Tsai MC (2001) Attenuation of paraquat-induced dopaminergic toxicity on the substantia nigra by (-)-deprenyl in vivo. Toxicol Appl Pharmacol 172:37–43

    CAS  PubMed  Article  Google Scholar 

  52. Lopez-Lazaro M, Calderon-Montano JM, Burgos-Moron E, Austin CA (2011) Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide. Mutagen 26(4):489–498

    CAS  Article  Google Scholar 

  53. Lorenz M, Paul F, Moobed M, Baumann G, Zimmermann B, Stangl K, Stangl V (2014) The activity of catechol-O-methyltransferase (COMT) is not impaired by high doses of epigallocatechin-3-gallate (EGCG) in vivo. Eur J Pharmacol 740:645–651

    CAS  PubMed  Article  Google Scholar 

  54. Lu H, Meng X, Yang CS (2003) Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Met Disp 31:572–579

    CAS  Article  Google Scholar 

  55. Luo KW, Ko CH, Yue GG, Lee JK, Li KK, Lee M, Li G, Fung KP, Leung PC, Lau CB (2014) Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice. J Nutr Biochem 25(4):395–403

    CAS  PubMed  Article  Google Scholar 

  56. Ly C, Yockell-Lellevre J, Ferraro ZM et al (2015) The effects of dietary polyphenols on reproductive health and early development. Hum Repord Update 21(2):228–248. doi:10.1093/humupd/dmu058

    Article  Google Scholar 

  57. Ma YC, Li C, Gao F, Xu Y, Jiang ZB, Liu JX, Jin LY (2014) Epigallocatechin gallate inhibits the growth of human lung cancer by directly targeting the EGFR signaling pathway. Oncol Rep 31(3):1343–1349

    CAS  PubMed  Google Scholar 

  58. Magrone T, Jirillo E (2015) Childhood obesity:immune response and nutritional approaches. Front Immunol 6:76. doi:10.3389/fimmu.2015.00076

    PubMed Central  PubMed  Article  Google Scholar 

  59. Maliakal P, Sankpal UT, Basha R, Maliakal C, Ledford A, Wanwimolruk S (2011) Relevance of drug metabolizing enzyme activity modulation by tea polyphenols in the inhibition of esophageal tumorigenesis. Med Chem 7(5):480–487

    CAS  PubMed  Article  Google Scholar 

  60. Manikandan R, Beulaja M, Arulvasu C, Sellamuthu S, Dinesh D, Prabhu D, Babu G, Vaseeharan B, Prabhu NM (2012) Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines. Microsc Res Techniq 75(2):112–116. doi:10.1002/jemt.21032

    CAS  Article  Google Scholar 

  61. Mazumder ME, Beale P, Chan C, Yu JQ, Huq F (2012) Epigallocatechin gallate acts synergistically in combination with cisplatin and designed trans-palladiums in ovarian cancer cells. Anticancer Res 32(11):4851–4860

    CAS  PubMed  Google Scholar 

  62. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21:195–218

    CAS  PubMed  Article  Google Scholar 

  63. Mei X, Wu YY, Mao X, Tu YY (2011) Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols. Environ Pollut 159(1):164–168

    CAS  PubMed  Article  Google Scholar 

  64. Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M (2010) Micronutrient synergy–a new tool in effective control of metastasis and other key mechanisms of cancer. Cancer Metast Rev 29(3):529–542

    CAS  Article  Google Scholar 

  65. Okello EJ, McDougal GJ, Kumar S, Seal CJ (2011) In vitro protective effects of colon available extract of Camellia sinensis (tea) against hydrogen peroxide and beta-amyloid (A(1-42)) induced cytotoxicity in differentiated PC12 cells. Phytomed 18(8–9):691–696

    CAS  Article  Google Scholar 

  66. Park JS, Khoi PN, Joo YE, Lee YH, Lang SA, Stoeltzing O, Jung YD (2013) EGCG inhibits recepteur d’origine nantais expression by suppressing Egr-1 in gastric cancer cells. Int J Oncol 42(3):1120–1126. doi:10.3892/ijo.2013.1775

    CAS  PubMed  Google Scholar 

  67. Passamani FR, Hemandes T, Lopes NA, Bastos SC, Santiago WD, Cardoso Md, Batista LR (2014) Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes. J Food Prot 77(11):1947–1952

    PubMed  Article  CAS  Google Scholar 

  68. Paz Z, Shoenfeld Y (2010) Antifbrosis: to reverse the irreversible. Clin Rev Allerg Immu 38:276–286

    Article  Google Scholar 

  69. Peluso L, Villano DV, Roberts SA, Cesqul E, Raguzzini A, Borges G, Crozier A, Catasta G, Toti E, Serafini M (2014) Consumption of mixed fruit-juice drink and vitamin C reduces postprandial stress induced by a high fat meal in healthy overweight subjects. Curr Trends Pharm Discov 20(6):1020–1024

    CAS  Article  Google Scholar 

  70. Perry G, Cash AD, Smith MA (2002) Alzheimer disease and oxidative stress. J Biomed Biotech 2:120–123

    Article  Google Scholar 

  71. Pontiki E, Hadjipaviou-Litina D, Litinas K, Geromichalos G (2014) Novel cinnamic acid derivatives and anticancer agents:design, synthesis and modeling studies. Molecules 19(7):9655–9674

    PubMed  Article  CAS  Google Scholar 

  72. Rahman M, Khatun A, Nesa ML, Hossain H, Jahan IA (2015) Bioactive polyphenols from methanol extract of cnicus arvensis (L) Roth demonstrated antinociceptive and central nervous system depressant activities in mice. Evid Based Complement Alternat Med. doi:10.1155/2015/794729

    Google Scholar 

  73. Rao SD, Pagidas K (2010) Epigallocatechin-3-gallate, a natural polyphenol, inhibits cell proliferation and induces apoptosis in human ovarian cancer cells. Anticancer Res 30(7):2519–2523

    CAS  PubMed  Google Scholar 

  74. Rauf A, Khan R, Raza M, Khan H, Pervez S, De Feo V, Maione F, Mascolo N (2015) Suppression of inflammatory response by chrysin, a flavone isolated from Potentilla evestita Th. Wolf. in silico predictive study on its mechanistic effect. Fitotherapia 103:129–135

    CAS  Article  Google Scholar 

  75. Ray L, Kumar P, Gupta KC (2013) The activity against Ehrlich’s ascites tumors of doxorubicin contained in self assembled, cell receptor targeted nanoparticle with simultaneous oral delivery of the green tea polyphenol epigallocatechin-3-gallate. Biomaterials 34(12):3064–3076

    CAS  PubMed  Article  Google Scholar 

  76. Recchia A, Debetto P, Negro A, Guidolin D, Skaper S, Giusti P (2004) α-Synuclein and Parkinson’s disease. FASEB J 18(6):617–626

    CAS  PubMed  Article  Google Scholar 

  77. Relja B, Tottel E, Breig L, Henrich D, Schender H, Marzi I, Lehnert M (2012) Plant polyphenols attenuate hepatic injury after hemorrhage resuscitation by inhibition of apoptosis, oxidative stress, and inflammation via NF-kappaB in rats. Eur J Nutr 51(3):311–321

    CAS  PubMed  Article  Google Scholar 

  78. Ren L, Yang HY, Choi HI, Chung KJ, Yang U, Lee IK, Kim HJ, Lee DS, Park BJ, Lee TH (2011) The role of peroxiredoxin V in (-)-epigallocatechin 3-gallate-induced multiple myeloma cell death. Oncol Res 19(8–9):391–398

    PubMed  Article  CAS  Google Scholar 

  79. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    CAS  PubMed  Article  Google Scholar 

  80. Roomi MW, Roomi NW, Kalinovsky T, Niedzwiecki A, Rath M (2012) Micronutrient synergy in the fight against hepatocellular carcinoma. Cancers (Basel) 4(2):323–339

    CAS  Article  Google Scholar 

  81. Safer AM, Afzal M, Nomani A, Sosamma O, Mousa SA (2012) Curative propensity of green tea extract towards hepatic fibrosis induced by CCl4: a histopathological study. Exp Ther Med 3:781–786

    PubMed Central  PubMed  Google Scholar 

  82. Safer AM, Nomani H, Bharali DJ, Cui H, Mousa SA (2015) Effect of green tea extract encapsulated into chitosan nanoparticles on hepatic fibrosis collagen fibers assessed by atomic force microscopy in rat hepatic fibrosis model. J Nanosci Nanotech 15:1–8

    Article  CAS  Google Scholar 

  83. Shan HM, Shi Y, Quan J (2015) Identification of green tea as potent inhibitor of the polo-box domain of polo-like kinase 1. ChemMedChem 10(1):158–163

    CAS  PubMed  Article  Google Scholar 

  84. Sharma R, Kumar R, Kodwani R, et al. (2015). A review on mechanism of anti tumor activity of chalcones. Anticancer Agents Med Chem URL http://www.ncbi.nlm.nih.gov/pubmed/25980813

  85. Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, Dagda RY, Chyu MC, Wang JS (2011) Protective action of green teapolyphenols and alfacalcidol on bone microstructure in female rats with chronic inflammation. J Butr Biochem 22(7):673–780

    CAS  Google Scholar 

  86. Shen CL, Samathanam C, Graham S, Dagda RY, Chyu MC, Dunn DM (2012) Green tea polyphenols and 1-alpha-OH-vitamin D(3) attenuates chronic inflammation-induced myocardial fibrosis in female rats. J Med Food 15(3):269–277

    CAS  PubMed  Article  Google Scholar 

  87. Shen T, Khor SC, Zhou F, Duan T, Xu YY, Zheng YF, Hsu S, Stefano DE, Yang J, Xu LH, Zhu XQ (2014) Chemoprevention by lipid-soluble tea polyphenols in diethylnitrosamine/phenobarbital-induced hepatic pre-cancerous lesions. Anticancer Res 34(2):683–693

    CAS  PubMed  Google Scholar 

  88. Signorelli P, Faiani C, Brizzolari A et al (2015) Natural grape extracts regulate colon cancer cells malignancy. Nutr Cancer 57(3):494–503

    Article  CAS  Google Scholar 

  89. Singh R, Akhtar N, Haqqi TM (2010) Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. Life Sci 86(25–26):907–918

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  90. Sonoda JI, Ikeda R, Baba Y, Narumi K, Kawachi A, Tomishige E, Nishihara K, Takeda Y, Yamada K, Sato K, Motoya T (2014) Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression. Exp Ther Med 8(1):59–63

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Srinivasan M, Lahiri DK (2015) Significance of NF-kappaB as pivital therapeutic agent in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin Ther Targets 19(4):471–487

    CAS  PubMed  Article  Google Scholar 

  92. Sun X, Huo X, Luo T, Li M, Yin Y, Jiang Y (2011) The anticancer flavonoid chrysin induces the unfolded protein response in hepatoma cells. J Cell Mol Med 15(11):2389–2398

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  93. Teles F, da Silva TM, da Cruz Junior FP et al (2015) Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model. PLoS One 10(1):e116535. doi:10.1371/journal.pone.0116535

    Article  Google Scholar 

  94. Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62:134–146

    CAS  PubMed  Article  Google Scholar 

  95. Torres FC, Brucker N, Andrade SF, Kawano DF, Garcia SC, Poser GL, Eifler-Lima VL (2014) New insights into the chemistry and antioxidant activities of coumarins. Curr Top Med Chem 14(22):2600–2623

    CAS  PubMed  Article  Google Scholar 

  96. Unger M (2010) Ingredients with vasodilator effect. Effect of green tea on the formation of endothelin-1. Pharm Unserer Zeit 39(6):469–471

    CAS  PubMed  Article  Google Scholar 

  97. Urusova DV, Shim JH, Kim DJ, Jung SK, Zykova TA, Carper A, Bode AM, Dong Z (2011) Epigallocatechin-gallate suppresses tumorigenesis by directly targeting Pin1. Cancer Preven Res (Philadelphia) 4(9):1366–1377

    CAS  Article  Google Scholar 

  98. Van Aller GS, Carson JD, Tang W, Peng H, Zhao L, Copeland RA, Tummino PJ, Luo L (2011) Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Comm 406(2):194–199

    PubMed  Article  CAS  Google Scholar 

  99. Wang H, Bian S, Yang CS (2011) Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1alpha. Carcinogen 32(12):1881–1889

    CAS  Article  Google Scholar 

  100. Wang Y, Ren X, Deng C, Yang L, Yan E, Guo T, Li Y, Xu MX (2013) Mechanism of the inhibition of the STAT3 signaling pathway by EGCG. Oncol Rep 30(6):2691–2696. doi:10.3892/or.2013.2743

    CAS  PubMed  Google Scholar 

  101. Wang X, Zhai W, Wu C, Ma B, Zhang J, Zhang H, Zhu Z, Chang J (2015) Procyanidins-crosslinked aortic elastin scaffolds with distinctive anticalcification and biological properties. Acta Biomater 16:81–93

    CAS  PubMed  Article  Google Scholar 

  102. Weerawatanakom M, Lee YL, Tsai CY, Wan X, Ho CT, Li S, Pan MH (2015) Protective effect of theaflavin-enriched black tea extracts against dimethylnitrosamine-induced liver fibrosis in rats. Food Funct. doi:10.1039/c5fo00126a

    Google Scholar 

  103. Weinreb O, Mandel S, Youdim MBH (2003) CDNA gene expression profile homology of antioxidants and their anti-apoptotic and proapoptotic activities in human neuroblastoma cells. Fed Exp Biol Soc FEBS J 17:935–937

    CAS  Google Scholar 

  104. Wel DZ, Yang JY, Liu JW, Tong WY (2003) Inhibition of liver cancer cell proliferation and migration by a combination of (-)-epigallocatechin-3-gallate and ascorbic acid. J Chemother 15(6):591–595

    Article  Google Scholar 

  105. Wojciech L, Ewa Z, Elzbieta S (2010) Influence of green tea on erythrocytes antioxidant status of different age rats intoxicated with ethanol. Phytother Res 24(3):424–428

    CAS  PubMed  Article  Google Scholar 

  106. Wong JC, Fiscus RR (2015) Resveratrol at anti-angiogenesis/anticancer concentrations suppresses protein kinase G signalling and decreases IAPs expression in HUVECs. Anticancer Res 35(1):273–281

    CAS  PubMed  Google Scholar 

  107. Wright LE, Frye JB, Girti B, Timmermann BN, Funk JL (2013) Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr Pharm Des 19(34):6218–6225

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  108. Wu J, Zern MA (2000) Hepatic stellate cells: a target for the treatment of liver fibrosis. J Gastroentero 35:665–672

    CAS  Article  Google Scholar 

  109. Yasuda Y, Shimizu M, Sakai H, Iwasa J, Kubota M, Adachi S, Osawa Y, Tsurumi H, Hara Y, Moriwaki H (2009) (-)Epigallocatechingallate prevents carbon tetrachloride induced rat hepatic fibrosis by inhibiting the expression of the PDGFRbeta and IGF-1R. Chem Biol Interact 182:159–164

    CAS  PubMed  Article  Google Scholar 

  110. Yiannakopoulou E (2014) Green tea catechins: proposed mechanisms of action in breast cancer focusing on the interplay between survival and apoptosis. Anticancer Agents Med Chem 14(2):290–295

    CAS  PubMed  Article  Google Scholar 

  111. Yousaf S, Butt MS, Suleria HA, Iqbal MJ (2014) The role of green tea extract and powder in mitigating metabolic syndromes with special reference to hyperglycemia and hypercholesterolemia. Food Function 5(3):545–556

    CAS  PubMed  Article  Google Scholar 

  112. Zhang ZX, Roman GC (1993) Worldwide occurrence of Parkinson’s disease: an updated review. Neuroepidemiology 12:195–208

    CAS  PubMed  Article  Google Scholar 

  113. Zhang Y, Hays A, Noblett A, Thapa M, Hua DH, Hagenbuch B (2013) Transport by OATP1B1 and OATP1B3 enhances the cytotoxicity of epigallocatechin 3-O-gallate and several quercetin derivatives. J Nat Prod 76(3):368–373

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  114. Zhang Z, Li G, Szeto SS, Chong CM et al (2015) Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitra and in vivo models of Parkinson disease. Free Radic Biol Med 84:331–343

    CAS  PubMed  Article  Google Scholar 

  115. Zuo X, Tian C, Zhao N et al (2014) Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway. BMC Res Notes 7:120. doi:10.1186/1756-0500-7-120

    PubMed Central  PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors (MA & AMS) thankfully acknowledge assistance of their research lab. workers, Mrs. S. Oommen, Mr. Nomani and other workers in the nanoscopy unit of KU for their assistance. Dr. Vinod George, St. John’s Medical College, Bangalore, India, for his generous donation of the picture, tea leaf picking in India, is thankfully acknowledged. We are also grateful to RA, Kuwait University, for their support for the non-funded research projects.

Conflict of interest

The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Afzal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afzal, M., Safer, A.M. & Menon, M. Green tea polyphenols and their potential role in health and disease. Inflammopharmacol 23, 151–161 (2015). https://doi.org/10.1007/s10787-015-0236-1

Download citation

Keywords

  • Green tea
  • Epigallocatechin gallate
  • Inflammation
  • Cancer
  • Fibrosis
  • Alzheimer
  • Parkinsonism
  • Aging