, Volume 23, Issue 2–3, pp 119–125 | Cite as

Effect of bisphosphonates treatment on cytokine imbalance between TH17 and Treg in osteoporosis

  • Roba M. TalaatEmail author
  • Asmaa Sidek
  • Ahmed Mosalem
  • Ahmed Kholief
Research Article


Imbalance of T-helper-cell (TH) subsets (TH1/TH2/TH17) and regulatory T cells (Tregs) is suggested to contribute to the pathogenesis of osteoporosis. Broken TH17/Treg balance has been reported contributing to several inflammatory diseases. Although bisphosphonates are well-recognized inhibitors of osteoclastic activity, there is no serious examination of their effect on T cell subset (TH1/TH2/TH17/Treg) balances. Patients were categorized into 20 osteopenic and 20 osteoporotic patients treated with bisphosphonates for 1 year. We studied plasma levels of interleukins 4 (IL-4), IL-6, IL-10, IL-12, IL-17, IL-23, and interferon-gamma (IFN-γ), and transforming growth factor-beta (TGF-β) and their interrelations and correlation with osteoporosis treatment were evaluated. Treated osteoporotic patients have a significant reduction of plasma IL-6 (p < 0.05), IL-17 (p < 0.05), IL-23 (p < 0.05), and IFN-γ (p < 0.05), a significant increase in IL-4 (p < 0.05), IL-10 (p < 0.05), and TGF-β (p < 0.001), and comparable IL-12 levels as compared to controls. In conclusion, the significant reduction of Th17 cell cytokine cascade (IL-6, IL-17, and IL-23) and elevation of Treg cytokine cascade (IL-10 and TGF-β) might be considered as a very important observation about the effect of bisphosphonates on TH17/Treg imbalance in osteoporosis.


TH1 TH2 TH17 Treg Cytokines Osteoporosis 


Conflict of interest

The authors declare no conflict of interests.


  1. Abdelmagid SM, Barbe MF, Safadi FF (2015) Role of inflammation in the aging bones. Life Sci 123:25–34CrossRefPubMedGoogle Scholar
  2. Baker PJ (2000) The role of immune responses in bone loss during periodontal disease. Microbes Infect 2(10):1181–1192CrossRefPubMedGoogle Scholar
  3. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319(6053):516–518CrossRefPubMedGoogle Scholar
  4. Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20:793–800CrossRefPubMedCentralPubMedGoogle Scholar
  5. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73CrossRefPubMedGoogle Scholar
  6. Cantatore FP, Acquista CA, Pipitone V (1999) Evaluation of bone turnover and osteoclastic cytokines in early rheumatoid arthritis treated with alendronate. J Rheumatol 26:2318–2323PubMedGoogle Scholar
  7. Dong C (2006) Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6(4):329–333CrossRefPubMedGoogle Scholar
  8. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504CrossRefPubMedGoogle Scholar
  9. Feng X, McDonald J (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145CrossRefPubMedCentralPubMedGoogle Scholar
  10. Giuliani N, Girasole G, PedrazzoniM Passeri G, Gatti C, Passeri M (1995) Alendronate stimulates b-FGF production and mineralized nodule formation in human osteoblastic cells and osteoblastogenesis in human bone marrow cultures. J Bone Miner Res 10:S171Google Scholar
  11. Gowen M, Wood DD, Ihrie EJ, McGuire MK, Russell RG (1983) An interleukin 1-like factor stimulates bone resorption in vitro. Nature 306(5941):378–380CrossRefPubMedGoogle Scholar
  12. Grcević D, Katavić V, Lukić IK, Kovacić N, Lorenzo JA, Marusić A (2001) Cellular and molecular interactions between immune system and bone. Croat Med J. 42(4):384–392PubMedGoogle Scholar
  13. Hill PA, Tumber A, Papaioannou S, Meikle MC (1998) The cellular actions of interleukin-11 on bone resorption in vitro. Endocrinology 139(4):1564–1572CrossRefPubMedGoogle Scholar
  14. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145(10):3297–3303PubMedGoogle Scholar
  15. Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141CrossRefPubMedGoogle Scholar
  16. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759):304–309CrossRefPubMedGoogle Scholar
  17. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352CrossRefPubMedCentralPubMedGoogle Scholar
  18. Miyaura C, Kusano K, Masuzawa T, Chaki O, Onoe Y, Aoyagi M, Sasaki T, Tamura T, Koishihara Y, Ohsugi Y et al (1995) Endogenous bone-resorbing factors in estrogen deficiency: cooperative effects of IL-1 and IL-6. J Bone Miner Res 10(9):1365–1373CrossRefPubMedGoogle Scholar
  19. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  20. Nakamura M, Uehara S, Nakamura H, Udagawa N (2014) Cytokine-mediated bone resorption. Clin Calcium 24(6):837–844PubMedGoogle Scholar
  21. Passeri G, Girasole G, Uljetti V, Guiliani N, Pedrazzoni M, Sartori L, Jilka RL, Manolagas SC (1994) Bisphosphonates inhibit IL-6 production by human osteoblastic cells MG-63. J Bone Miner Res 9(suppl):S230Google Scholar
  22. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287CrossRefPubMedCentralPubMedGoogle Scholar
  23. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60:6001–6007PubMedGoogle Scholar
  24. Ro C, Cooper O (2013) Bisphosphonate drug holiday: choosing appropriate candidates. Curr Osteoporos Rep 11:45–51CrossRefPubMedCentralPubMedGoogle Scholar
  25. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289(5484):1508–1514CrossRefPubMedGoogle Scholar
  26. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352CrossRefPubMedGoogle Scholar
  27. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T (2006) Foxp3-CD25-CD4- natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27CrossRefPubMedGoogle Scholar
  28. Sato K, Takayanagi H (2006) Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol 18(4):419–426CrossRefPubMedGoogle Scholar
  29. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203(12):2673–2682CrossRefPubMedCentralPubMedGoogle Scholar
  30. Sato M, Nakamichi Y, Nakamura M, Sato N, Ninomiya T, Muto A, Nakamura H, Ozawa H, Iwasaki Y, Kobayashi E, Shimizu M, DeLuca HF, Takahashi N, Udagawa N (2007) New 19-nor-(20S)-1alpha,25-dihydroxyvitamin D3 analogs strongly stimulate osteoclast formation both in vivo and in vitro. Bone 40(2):293–304CrossRefPubMedGoogle Scholar
  31. Schenk R, Eggli P, Fleisch H, Rosini S (1986) Quantitative morphometric evaluation of the inhibitory activity of new aminophosphonates on bone resorption in the rat. Calif Tissue Int 38:342–349CrossRefGoogle Scholar
  32. Steeve K, Marc P, Sandrine T, Dominique H, Yannick F (2004) IL-6, RANKL, TNF-α/IL-1 interactions in bone resorption pathophysiology. Cytokine Growth Factor Rev 15:49–60CrossRefGoogle Scholar
  33. Suresh E, Pazianas M, Abrahamsen B (2014) Safety issues with bisphosphonate therapy for osteoporosis. Rheumatology 53:19–31CrossRefPubMedGoogle Scholar
  34. Takayanagi H (2005) Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40:287–293CrossRefPubMedGoogle Scholar
  35. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408(6812):600–605CrossRefPubMedGoogle Scholar
  36. Talaat RM, El-Bassiouny AI, Osman AM, Yossif M, Charmy R, Al-Sherbiny MM (2007) Cytokine secretion profile associated with periportal fibrosis in S. mansoni-infected Egyptian patients. Parasitol Res 101(2):289–299CrossRefPubMedGoogle Scholar
  37. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508CrossRefPubMedGoogle Scholar
  38. Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20:795–823CrossRefPubMedGoogle Scholar
  39. von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, Rubash HE, Shanbhag AS (2005) Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials 26(34):6941–6949CrossRefGoogle Scholar
  40. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24:33–63CrossRefPubMedGoogle Scholar
  41. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24(6):677–688CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Roba M. Talaat
    • 1
    Email author
  • Asmaa Sidek
    • 1
  • Ahmed Mosalem
    • 2
  • Ahmed Kholief
    • 3
  1. 1.Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI)Sadat City UniversitySadat CityEgypt
  2. 2.Department of Rheumatology and Rehabilitation, Faculty of MedicineAl-Azhar UniversityAssuitEgypt
  3. 3.Department of Orthopedics, Faculty of Medicine, El-Kasr El-Aini HospitalCairo UniversityCairoEgypt

Personalised recommendations