Advertisement

Inflammopharmacology

, Volume 22, Issue 2, pp 105–114 | Cite as

Analgesic and antiinflammatory activities of the ethyl acetate fraction of Bidens pilosa (Asteraceae)

  • Aurélien Fotso Fotso
  • Frida LongoEmail author
  • Paul Désiré Dzeufiet DjomeniEmail author
  • Siméon Fogue Kouam
  • Michael Spiteller
  • Alain Bertrand Dongmo
  • J. P. Savineau
Research Article

Abstract

Bidens pilosa is an Asteraceae widely used in traditional medicine for the treatment of various ailments including pain and inflammation. The present work was undertaken to assess the analgesic and antiinflammatory properties of the ethyl acetate fraction of methylene chloride/methanol (1:1) extract of leaves of Bidens pilosa at the gradual doses of 50, 100 and 200 mg/kg in mice and rats, respectively. The analgesic properties of Bidens pilosa were investigated using the acetic acid writhing, hot plate, capsaicin and formalin-induced pain models. This was followed by a study of the antiinflammatory properties using carrageenan, dextran, histamine and serotonin to induce acute inflammation in rat hind paw. The extract provided a significant (p < 0.01) reduction in pain induced by all four models of nociception. It also presented significant (p < 0.05) antiinflammatory activity in all four models of acute inflammation. These results show that the ethyl acetate fraction of methylene chloride/methanol (1:1) of Bidens pilosa has both analgesic and antiinflammatory properties. The qualitative analysis of the fraction by the high-performance liquid chromatography (HPLC) fingerprint revealed the presence of two flavonoids, namely quercetin and iso-okanin, known to have antiinflammatory and antinociceptive properties, which could be responsible for the analgesic and antiinflammatory effects observed.

Keywords

Bidens pilosa Analgesic Antiinflammatory Flavonoids 

References

  1. Adjanohoun JE, Aboubakar N, Dramane K et al (1996) Traditional medicine and pharmacopoeia: contribution to ethnobotanical and floristic studies in Cameroon. Organisation of African Unity Scientific, Technical and Research Commission, CNPMS, Porto-Novo, p 77Google Scholar
  2. Al Amin Md, Chowdhury IA, Mahbub KMM et al (2012) Anti-inflammatory and analgesic activities of Asteracantha longifolia Ness. Ban J Pharm 15(2):171–176Google Scholar
  3. Asongalem EA, Foyet HS, Ekobo S et al (2004) Antiinflammatory, lack of central analgesia and antipyretic properties of Acanthus montanus (Ness) T Anderson. J Ethnopharmacol 95:63–68PubMedCrossRefGoogle Scholar
  4. Bartolome AP, Villaseñor IM & Yang WC (2013). Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based complementary and alternative medicine, 340215: 51Google Scholar
  5. Brandao MGL, Nery CGC, Mamao MA et al (1998) Two methoxylated flavones glycosides from Bidens pilosa. Phytochem 48:397–399CrossRefGoogle Scholar
  6. Coderre TJ, Vaccarino AL, Melzack R (1990) Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res 535:155–158PubMedCrossRefGoogle Scholar
  7. Collier HT, Dinnen LC, Johnson CA et al (1968) The abdominal constriction response and it suppression by analgesic drugs in mouse. Br J Pharmacol Chemother 32:295–310PubMedCentralPubMedCrossRefGoogle Scholar
  8. Di Carlo G, Mascolo N, Izzo AA, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65(4):337–353PubMedCrossRefGoogle Scholar
  9. Dimo T, Azay J, Tan PV et al (2001) Effects of the aqueous and methylene chloride extracts of Bidens pilosa leaf on fructose-hypertensive rats. J Ethnopharmacol 76(3):215–221PubMedCrossRefGoogle Scholar
  10. Dongmo AB, Nguelefack TB, Lacaille-Dubois MA (2005) Antinociceptive and anti-inflammatory activities of Acacia pennata wild (Mimosaceae). J Ethnopharmacol 98:201–206PubMedCrossRefGoogle Scholar
  11. Favacho HAS, Oliveira BR, Santos KC et al (2011) Anti-inflammatory and antinociceptive activities of Euterpe oleracea Mart., Arecaceae, oil. Rev Bras Pharmacol 21(1):1015–1022Google Scholar
  12. Fotio LB, Dimo T, Nguelefack TB et al (2009) Acute and chronic anti-inflammatory properties of stem bark aqueous and methanol extracts of Sclerocarya birrea (Anacardiaceae). Inflammopharmacol 17:229–237CrossRefGoogle Scholar
  13. Galeotti N, Ghelardini C, Papucci L et al (1997) An antisense oligonucleotide on the mouse shaker-like potassium channel kv1.1 gene prevents antinociception induced by morphine and baclofen. J Pharmacol Exp Ther 281:941–949PubMedGoogle Scholar
  14. Harborne JB (1994) The Flavonoids: Advances in Research since 1986. Chapman & Hall, LondonCrossRefGoogle Scholar
  15. Honsoul K, Raghu PK, Gou YK (2012) Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol 33(7):350–356CrossRefGoogle Scholar
  16. Hunskaar HS, Hole K (1987) The formaline test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114PubMedCrossRefGoogle Scholar
  17. Koster R, Anderson M, De Beer EJ (1959) Acetic acid and analgesic screening. Proc Soc Exp Biol Med 18:412–415Google Scholar
  18. Lim KHJ, Yap KB (1999) The prescription pattern of outpatient polyclinic doctors. Sing J Med 40:416–419Google Scholar
  19. Lo TN, Almeida, Beavan MA (1982) Dextran and carrageenan evoke different inflammatory response in rat with respect to composition of infiltrates and effect of indomethacin. J Pharmacol Exp Ther 221:261–267PubMedGoogle Scholar
  20. Longo F, Rakotonirina S, Rakotonirina A et al (2) Evidence of phospholipase C signaling pathway activation by Bidens pilosa leaf aqueous extract on the rat primed estrogenized myometrium. Pharmacol onl 2:12–27Google Scholar
  21. Longo F, Rakotonirina S, Rakotonirina A et al (2008) In vivo and in vitro effects of Bidens pilosa L. (Asteraceae) leaf aqueous and ethanol extracts on primed-estrogenized rat uterine muscle. Afr J Tradit Complement Altern Med 5(1):79–91Google Scholar
  22. Longo F, Wafo TP, Rakotonirina S et al (2011) Ocytocic Effects of Bidens pilosa on primed-estrogenised rat myometrial sarcoplasmic reticulum. Syllabus Rev Sci Ser 2(2):47–56Google Scholar
  23. Mandal CS, Maity TK, Das J et al (2000) Anti-inflammatory evaluation of Ficus racemosa Linn leaf extract. J Ethnopharmacol 72:87–92PubMedCrossRefGoogle Scholar
  24. Manoj G, Sasmal D, Nagori BP (2012) Analgesic and anti-inflammatory activity of ethanolic extract of Zizyphus nummularia. Res J Med Pl 6(7):521–528CrossRefGoogle Scholar
  25. Masako H, Yoshiyuki S (2006) Anti-inflammatory and anti-allergic activities of Bidens pilosa L. var. radiata Scherff. J Health Sci 52(6):711–717CrossRefGoogle Scholar
  26. Mbacham W, Evehe M, Bilanda D et al (2005) Synergistic effects in vitro with chloroquine, of methanol extract of Bidens pilosa leaves on resistant Plasmodium falciparum isolate [MIM-BD-3144]. J Act Trop 95:S342–S342Google Scholar
  27. Merskey HM (1986) Pain terms. Pain 3:215–221Google Scholar
  28. Meymandi MS, Sepehri G (2008) Gabapentin action and reaction on the antinociceptive effects of morphine on visceral pain in mice. Eur J Anaesthesiol 25:129–134PubMedCrossRefGoogle Scholar
  29. Morris CJ (2003) Carrageenan-Induced Paw Edema in the rat and mouse. Methods Mol Biol 225:115–121PubMedGoogle Scholar
  30. Nguemfo EL, Dimo T, Dongmo AB et al (2009) Anti-oxydative and anti-inflammatory activities of some isolated constituents from the stem bark of Allanblackia monticola Staner L.C (Guttiferae). Inflammopharmacology 17:37–41PubMedCrossRefGoogle Scholar
  31. Paola S, Mauro B, Manfredi B et al (1997) Effects of tramadol on immune response and nociceptive thesholds in mice. Pain 72:325–330CrossRefGoogle Scholar
  32. Rajavel R, Mallika P, Rajesh V et al (2012) Antinociceptive and anti-inflammatory effects of the methanolic extract of Oscillatoria annae. Res J Chem Sci 2(7):53–61Google Scholar
  33. Robak J, Gryglewski RJ (1996) Bioactivity of flavonoïds. Pol J Pharmacol 48(6):555–564PubMedGoogle Scholar
  34. Sakurada T, Katsumata K, Tan-No K et al (1992) The capsaicin test in mice for evaluating tachykinin antagonists in the spinal cord. Neuropharmacology 31:1279–1285PubMedCrossRefGoogle Scholar
  35. Satyanarayana PSV, Jain NK, Singh S et al (2004) Effect of selective inhibition of cyclooxygenase-2 on lipopolysaccharide induced hyperalgesia. Inflammopharmacology 12:57–68PubMedCrossRefGoogle Scholar
  36. Sharma US, Sharma UK, Sutar N et al (2010) Anti-inflammatory activity of Cordia dichotoma forst f. seeds extracts. J Pharmac Analys 2(1):1–4Google Scholar
  37. Tan PV, Dimo T, Dongo E (2000) Effects of methanol, cyclohexane and methylene chloride extracts of Bidens pilosa on various gastric ulcer models in rats. J Ethnopharmacol 73(3):415–421PubMedCrossRefGoogle Scholar
  38. Théophile D, Laure NE, Benoît NT et al (2006) Antinociceptive and anti-inflammatory effects of the ethyl acetate stem bark extract of Bridelia scleroneura (Euphorbiaceae). Inflammopharmacology 14:42–47PubMedCrossRefGoogle Scholar
  39. Toker G, Küpeli E, Memisoğlu M et al (2004) Flavonoids with antinociceptive and anti-inflammatory activities from the leaves of Tilia argentea. J Ethnopharmacol 95(2–3):393–397PubMedCrossRefGoogle Scholar
  40. Tracy RP (2006) The five cardinal signs of inflammation: colour, dolor, rubor, tumor and penuria (apologies to Aulus Cornelius Celsus, de medica, c. 25). J Gerontol 61:1051–1052CrossRefGoogle Scholar
  41. Wang J, Yang H, Lin ZW et al (1997) Flavonoids from Bidens pilosa Var. Radiata Phytochem 46:1275–1278CrossRefGoogle Scholar
  42. Winter CA, Risley EA, Nuss GW (1962) Carrageenan-induced edemas in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–547PubMedCrossRefGoogle Scholar
  43. Yoon CH, Chung SJ, Lee SW et al (2013) L’acide gallique, acide polyphénolique naturel, induit l’apoptose et inhibe l’expression des gènes pro-inflammatoires dans les synoviocytes fibroblastiques de polyarthrite rhumatoïde. Revue du Rhumatisme 80(3):271–278 In FrenchCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Aurélien Fotso Fotso
    • 1
  • Frida Longo
    • 1
    Email author
  • Paul Désiré Dzeufiet Djomeni
    • 2
    Email author
  • Siméon Fogue Kouam
    • 3
  • Michael Spiteller
    • 4
  • Alain Bertrand Dongmo
    • 5
  • J. P. Savineau
    • 6
  1. 1.Laboratory of Animal Physiology, Department of Biological Science, Higher Teachers’ Training CollegeUniversity of Yaoundé IYaoundéCameroon
  2. 2.Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  3. 3.Laboratory of Organic Chemistry, Department of Chemistry, Higher Teachers’ Training CollegeUniversity of Yaoundé IYaoundéCameroon
  4. 4.Institute of Environmental Research (INFU) of the Faculty of ChemistryDortmundGermany
  5. 5.Laboratory of Animal Organism Biology, Faculty of ScienceUniversity of DoualaDoualaCameroon
  6. 6.Cardiothoraxic Research Center of Bordeaux (INSERM U 1045)University of Victor Segalen Bordeaux 2Bordeaux cedexFrance

Personalised recommendations