Skip to main content

Advertisement

Log in

Lyme disease: aetiopathogenesis, factors for disease development and control

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Lyme disease is caused by infection with several genospecies from the Borrelia burgdorferi sensu lato (s.l.) complex, and is transmitted by ixodid ticks. Human disease is an infrequent sequel to infection, which suggests that multiple factors underlie disease development. Several innate immune defects modulating disease development are observed in both natural and experimental infections, and significant heterogeneity exists between B. burgdorferi s.l. spirochaetes. These factors create a panel of presentations from asymptomatic carriage to overt and variable disease. In this short review we summarise the host immune responses associated with Lyme disease in humans, domestic species and laboratory mouse strains, and discuss B. burgdorferi s.l. pathogenicity. We also describe briefly the epidemiology of Lyme disease, and current options for the treatment and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberer E (2007) Lyme borreliosis—an update. J. Dtsch. Dermatol. Ges. 5:406–414

    Article  PubMed  Google Scholar 

  • Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen R, Medzhitov R, Fikrig E, Flavell R (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8:878–884

    PubMed  CAS  Google Scholar 

  • Antonara S, Chafel R, LaFrance M, Coburn J (2007) Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol 66:262–276

    Article  PubMed  CAS  Google Scholar 

  • Barthold S (1991) Infectivity of Borrelia burgdorferi relative to route of inoculation and genotype in laboratory mice. J Infect Dis 163:419–420

    Article  PubMed  CAS  Google Scholar 

  • Benach JL, Coleman JL, Skinner RA, Bosler EM (1987) Adult Ixodes dammini on rabbits: a hypothesis for the development and transmission of Borrelia burgdorferi. J Infect Dis 155:1300–1306

    Article  PubMed  CAS  Google Scholar 

  • Benoist C, Mathis D (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2:797–801

    Article  PubMed  CAS  Google Scholar 

  • Bernardino A, Myers T, Alvarez X, Hasegawa A, Philipp M (2008) Toll-like receptors: insights into their possible role in the pathogenesis of lyme neuroborreliosis. Infect Immun 76:4385–4395

    Article  PubMed  CAS  Google Scholar 

  • Blander J, Medzhitov R (2006) On regulation of phagosome maturation and antigen presentation. Nat Immunol 7:1029–1035

    Article  PubMed  CAS  Google Scholar 

  • Blevins J, Hagman K, Norgard M (2008) Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol 8:82

    Article  PubMed  CAS  Google Scholar 

  • Brooks C, Hefty P, Jolliff S, Akins D (2003) Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect Immun 71:3371–3383

    Article  PubMed  CAS  Google Scholar 

  • Brown E, Wooten R, Johnson B, Iozzo R, Smith A, Dolan M, Guo B, Weis J, Hook M (2001) Resistance to Lyme disease in decorin-deficient mice. J. Clin. Invest 107:845–852

    Article  PubMed  CAS  Google Scholar 

  • Burgdorfer W, Barbour A, Hayes S, Benach J, Grunwaldt E, Davis J (1982) Lyme disease-a tick-borne spirochetosis? Science 216:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Caimano M, Eggers C, Gonzalez C, Radolf J (2005) Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187:7845–7852

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Garon C, Schwan T (1999) Effects of environmental pH on membrane proteins in Borrelia burgdorferi. Infect Immun 67:3181–3187

    PubMed  CAS  Google Scholar 

  • Casjens S, Palmer N, van Vugt R, Huang W, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson R, Haft D, Hickey E, Gwinn M, White O, Fraser C (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516

    Article  PubMed  CAS  Google Scholar 

  • Casjens S, Mongodin E, Qiu W, Luft B, Schutzer S, Gilcrease E, Huang W, Vujadinovic M, Aron J, Vargas L, Freeman S, Radune D, Weidman J, Dimitrov G, Khouri H, Sosa J, Halpin R, Dunn J, Fraser C (2012) Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS ONE 7:e33280

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Ku Y, Chang C, Chang C, McDonough S, Divers T, Pough M, Torres A (2005) Antibiotic treatment of experimentally Borrelia burgdorferi-infected ponies. Vet Microbiol 107:285–294

    Article  PubMed  CAS  Google Scholar 

  • Coleman A, Yang X, Kumar M, Zhang X, Promnares K, Shroder D, Kenedy M, Anderson J, Akins D, Pal U (2008) Borrelia burgdorferi complement regulator-acquiring surface protein 2 does not contribute to complement resistance or host infectivity. PLoS ONE 3:3010e

    Article  PubMed  CAS  Google Scholar 

  • Doria A, Canova M, Tonon M, Zen M, Rampudda E, Bassi N, Atzeni F, Zampieri S, Ghirardello A (2008) Infections as triggers and complications of systemic lupus erythematosus. Autoimmune Rev 8:24–28

    Article  CAS  Google Scholar 

  • Dudai Y, Buxbaum J, Corfas G, Ofarim M (1987) Formamidines interact with Drosophila octopamine receptors, alter the flies’ behaviour and reduce their learning ability. J Comp Physiol 161:739–746

    Article  CAS  Google Scholar 

  • Ekerfelt C, Jarefors S, Tynngard N, Hedlund M, Sander B, Bergstrom S, Forsberg P, Ernerudh J (2003) Phenotypes indicating cytolytic properties of Borrelia-specific interferon-gamma secreting cells in chronic Lyme neuroborreliosis. J Neuroimmunol 145:115–126

    Article  PubMed  CAS  Google Scholar 

  • Faulde M, Albiez G, Nehring O (2010) Insecticidal, acaricidal and repellent effects of DEET- and IR3535-impregnated bed nets using a novel long-lasting polymer-coating technique. Parasitol Res 106:957–965

    Article  PubMed  Google Scholar 

  • Fischer J, Parveen N, Magoun L, Leong J (2003) Decorin-binding proteins A and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci USA 100:7307–7312 (Epub 2003 May 28)

    Article  PubMed  CAS  Google Scholar 

  • Fraser C, Casjens S, Huang W, Sutton G, Clayton R, Lathigra R, White O, Ketchum K, Dodson R, Hickey E, Gwinn M, Dougherty B, Tomb J, Fleischmann R, Richardson D, Peterson J, Kerlavage A, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams M, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fuji C, Cotton M, Horst K, Roberts K, Hatch B, Smith H, Venter J (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586

    Article  PubMed  CAS  Google Scholar 

  • Gammons M, Salam G (2002) Tick removal. Am Fam Physician 66:643–645

    PubMed  Google Scholar 

  • Gautam A, Dixit S, Philipp M, Singh S, Morici L, Kaushal D, Dennis V (2011) Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation. Infect Immun 79:4876–4892

    Article  PubMed  CAS  Google Scholar 

  • Hancock P, Brackley R, Palmer S (2011) Modelling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations. Int J Parasitol 41:513–522

    Article  PubMed  Google Scholar 

  • Hartmann K, Corvey C, Skerka C, Kirschfink M, Karas M, Brade V, Miller J, Stevenson B, Wallich R, Zipfel P, Kraiczy P (2006) Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1. Mol Microbiol 61:1220–1236

    Article  PubMed  CAS  Google Scholar 

  • Hellwage J, Meri T, Heikkila T, Alitalo A, Panelius J, Lahdenne P, Seppala I, Meri S (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276:8427–8435

    Article  PubMed  CAS  Google Scholar 

  • Hirschfeld M, Kirschning C, Schwandner R, Wesche H, Weis J, Wooten R, Weis J (1999) Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J. Immunol 163:2382–2386

    PubMed  CAS  Google Scholar 

  • Hovius J, Levi M, Fikrig E (2008) Salivating for knowledge: potential pharmacological agents in tick saliva. PLoS Med 5:e43

    Article  PubMed  CAS  Google Scholar 

  • Hubner A, Yang X, Nolen D, Popova T, Cabello F, Norgard M (2001) Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci USA 98:12724–12729

    Article  PubMed  CAS  Google Scholar 

  • Hunfeld K, Ruzic-Sabljic E, Norris D, Kraiczy P, Strle F (2005) In vitro susceptibility testing of Borrelia burgdorferi sensu lato isolates cultured from patients with erythema migrans before and after antimicrobial chemotherapy. Antimicrob Agents Chemother 49:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Imai D, Barr B, Daft B, Bertone J, Feng S, Hodzic E, Johnston J, Olsen K, Barthold S (2011) Lyme neuroborreliosis in 2 horses. Vet Pathol 48:1151–1157

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Kim S, Heo J, Lee M, Kim H, Paik S, Lee H, Lee J (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Jones N, Germain A, Riley K, Bautista C, Taylor W, Wells A (1994) Borrelia burgdorferi decreases hyaluronan synthesis but increases IL-6 production by fibroblasts. Microb Pathog 16:261–267

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Nan X, Jin M, Youn S, Ryu Y, Mah S, Han S, Lee H, Paik S, Lee J (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31:873–884

    Article  PubMed  CAS  Google Scholar 

  • Kannian P, Drouin E, Glickstein L, Kwok W, Nepom G, Steere A (2007) Decline in the frequencies of Borrelia burgdorferi OspA161 175-specific T cells after antibiotic therapy in HLA-DRB1*0401-positive patients with antibiotic-responsive or antibiotic-refractory lyme arthritis. J. Immunol 179:6336–6342

    PubMed  CAS  Google Scholar 

  • Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins T, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres N, Cabrera V, Underhill P, Bustamante C, Vigl E, Samadelli M, Cipollini G, Haas J, Katus H, O’Connor B, Carlson M, Meder B, Blin N, Meese E, Pusch C, Zink A (2012) New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3:698

    Article  PubMed  CAS  Google Scholar 

  • Kenedy MR, Lenhart TR, Akins DR (2012) The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol Med Microbiol 66:1–19. doi:10.1111/j.1574-695X.2012.00980.x

    Article  PubMed  CAS  Google Scholar 

  • Klempner M, Noring R, Epstein M, McCloud B, Hu R, Limentani S, Rogers R (1995) Binding of human plasminogen and urokinase-type plasminogen activator to the Lyme disease spirochete, Borrelia burgdorferi. J Infect Dis 171:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Kraiczy P, Hartmann K, Hellwage J, Skerka C, Kirschfink M, Brade V, Zipfel P, Wallich R, Stevenson B (2004) Immunological characterization of the complement regulator factor H-binding CRASP and Erp proteins of Borrelia burgdorferi. Int J Med Microbiol 293:152–157

    PubMed  CAS  Google Scholar 

  • Lam T, Nguyen T, Montgomery R, Kantor F, Fikrig E, Flavell R (1994) Outer surface proteins E and F of Borrelia burgdorferi, the agent of Lyme disease. Infect Immun 62:290–298

    PubMed  CAS  Google Scholar 

  • Lawrenz M, Wooten R, Zachary J, Drouin S, Weis J, Wetsel R, Norris S (2003) Effect of complement component C3 deficiency on experimental Lyme borreliosis in mice. Infect Immun 71:4432–4440

    Article  PubMed  CAS  Google Scholar 

  • Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers D, Eggers C, Anderson J, Radolf J, Fikrig E (2007) The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63:694–710

    PubMed  CAS  Google Scholar 

  • Liang F, Brown E, Wang T, Iozzo R, Fikrig E (2004) Protective niche for Borrelia burgdorferi to evade humoral immunity. Am J Pathol 165:977–985

    Article  PubMed  Google Scholar 

  • Lischer C, Leutenegger C, Braun U, Lutz H (2000) Diagnosis of Lyme disease in two cows by the detection of Borrelia burgdorferi DNA. Vet. Rec 146:497–499

    Article  PubMed  CAS  Google Scholar 

  • Littman M, Goldstein R, Labato M, Lappin M, Moore G (2006) ACVIM small animal consensus statement on Lyme disease in dogs: diagnosis, treatment, and prevention. J Vet Intern Med 20:422–434

    Article  PubMed  Google Scholar 

  • Ljostad U, Skogvoll E, Eikeland R, Midgard R, Skarpaas T, Berg A, Mygland A (2008) Oral doxycycline versus intravenous ceftriaxone for European Lyme neuroborreliosis: a multicentre, non-inferiority, double-blind, randomised trial. Lancet Neurol 7:690–695

    Article  PubMed  CAS  Google Scholar 

  • Lockhart E, Green A, Flynn J (2006) IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol 177:4662–4669

    PubMed  CAS  Google Scholar 

  • Magnarelli L, Ijdo J, Van Andel A, Wu C, Padula S, Fikrig E (2000) Serologic confirmation of Ehrlichia equi and Borrelia burgdorferi infections in horses from the northeastern United States. J Am Vet Med Assoc 217:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Margos G, Vollmer S, Ogden N, Fish D (2011) Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect. Genet. Evol 11:1545–1563

    Article  PubMed  Google Scholar 

  • Martin B, Hirota K, Cua D, Stockinger B, Veldhoen M (2009) Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–330

    Article  PubMed  CAS  Google Scholar 

  • Miller J, Ma Y, Bian J, Sheehan K, Zachary J, Weis J, Schreiber R, Weis J (2008) A critical role for type I IFN in arthritis development following Borrelia burgdorferi infection of mice. J. Immunol 181:8492–8503

    PubMed  CAS  Google Scholar 

  • Moreira L, El Kasmi K, Smith A, Finkelstein D, Fillon S, Kim Y, Nunez G, Tuomanen E, Murray P (2008) The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell walls. Cell Microbiol 10:2067–2077

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern K, Baljer G, Norris D, Kraiczy P, Hanssen-Hubner C, Hunfeld K (2009) In vitro susceptibility of Borrelia spielmanii to antimicrobial agents commonly used for treatment of Lyme disease. Antimicrob Agents Chemother 53:1281–1284

    Article  PubMed  CAS  Google Scholar 

  • Mygland A, Ljostad U, Fingerle V, Rupprecht T, Schmutzhard E, Steiner I (2010) EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur J Neurol 17:8–16

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi J, Piesman J, de Silva A (2001) Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci USA 98:670–675

    Article  PubMed  CAS  Google Scholar 

  • Omueti K, Beyer J, Johnson C, Lyle E, Tapping R (2005) Domain exchange between human toll-like receptors 1 and 6 reveals a region required for lipopeptide discrimination. J Biol Chem 280:36616–36625

    Article  PubMed  CAS  Google Scholar 

  • Oosting M, Berende A, Sturm P, Ter Hofstede H, de Jong D, Kanneganti T, van der Meer J, Kullberg B, Netea M, Joosten L (2010) Recognition of Borrelia burgdorferi by NOD2 is central for the induction of an inflammatory reaction. J Infect Dis 201:1849–1858

    Article  PubMed  CAS  Google Scholar 

  • Pal U, de Silva A, Montgomery R, Fish D, Anguita J, Anderson J, Lobet Y, Fikrig E (2000) Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A. J. Clin. Invest. 106:561–569

    Article  PubMed  CAS  Google Scholar 

  • Pal U, Yang X, Chen M, Bockenstedt L, Anderson J, Flavell R, Norgard M, Fikrig E (2004) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J. Clin. Invest. 113:220–230

    PubMed  CAS  Google Scholar 

  • Pasare C, Medzhitov R (2004) Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 6:1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Paul J, Karmakar S, De T (2012) TLR mediated distinct IFN-gamma/IL-10 pattern induces protective immunity against murine visceral leishmaniasis. Eur J Immunol 23:201242428

    Google Scholar 

  • Petzke M, Brooks A, Krupna M, Mordue D, Schwartz I (2009) Recognition of Borrelia burgdorferi, the Lyme disease spirochete, by TLR7 and TLR9 induces a type I IFN response by human immune cells. J. Immunol. 183:5279–5292

    Article  PubMed  CAS  Google Scholar 

  • Poland G (2011) Vaccines against Lyme disease: what happened and what lessons can we learn? Clin Infect Dis 52:s253–s258

    Article  PubMed  Google Scholar 

  • Priest H, Irby N, Schlafer D, Divers T, Wagner B, Glaser A, Chang Y, Smith M (2012) Diagnosis of Borrelia-associated uveitis in two horses. Vet Ophthalmol 23:1463–5224

    Google Scholar 

  • Probert W, Johnson B (1998) Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Radolf J, Caimano M, Stevenson B, Hu L (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99

    PubMed  CAS  Google Scholar 

  • Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang X, Fish D, Anguita J, Norgard M, Kantor F, Anderson J, Koski R, Fikrig E (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–577

    Article  PubMed  CAS  Google Scholar 

  • Rana A, Minz RW, Aggarwal R, Anand S, Pasricha N, Singh S (2012) Gene expression of cytokines (TNF-α, IFN-γ), serum profiles of IL-17 and IL-23 in paediatric systemic lupus erythematosus. Lupus 21:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Rose C, Fawcett P, Gibney K (2001) Arthritis following recombinant outer surface protein A vaccination for Lyme disease. J Rheumatol 28:2555–2557

    PubMed  CAS  Google Scholar 

  • Samuels D (2011) Gene regulation in Borrelia burgdorferi. Annu Rev Microbiol 65:479–499

    Article  PubMed  CAS  Google Scholar 

  • Schroder N, Diterich I, Zinke A, Eckert J, Draing C, von Baehr V, Hassler D, Priem S, Hahn K, Michelsen K, Hartung T, Burmester G, Gobel U, Hermann C, Schumann R (2005) Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J. Immunol. 175:2534–2540

    PubMed  Google Scholar 

  • Schuijt T, Coumou J, Narasimhan S, Dai J, Deponte K, Wouters D, Brouwer M, Oei A, Roelofs J, van Dam A, van der Poll T, Van’t Veer C, Hovius J, Fikrig E (2011) A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the Lyme disease agent. Cell Host Microbe 10:136–146

    Article  PubMed  CAS  Google Scholar 

  • Schwan T, Piesman J, Golde W, Dolan M, Rosa P (1995) Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 92:2909–2913

    Article  PubMed  CAS  Google Scholar 

  • Shaw S, Binns S, Birtles R, Day M, Smithson R, Kenny M (2005) Molecular evidence of tick-transmitted infections in dogs and cats in the United Kingdom. Vet. Rec. 157:645–648

    PubMed  CAS  Google Scholar 

  • Shi C, Sahay B, Russell J, Fortner K, Hardin N, Sellati T, Budd R (2011) Reduced immune response to Borrelia burgdorferi in the absence of gammadelta T cells. Infect Immun 79:3940–3946

    Article  PubMed  CAS  Google Scholar 

  • Sonderegger F, Ma Y, Maylor-Hagan H, Brewster J, Huang X, Spangrude G, Zachary J, Weis J, Weis J (2012) Localized production of IL-10 suppresses early inflammatory cell infiltration and subsequent development of IFN-gamma-mediated Lyme arthritis. J. Immunol. 188:1381–1393

    Article  PubMed  CAS  Google Scholar 

  • Stanek G, Wormser G, Gray J, Strle F (2012) Lyme borreliosis. Lancet 379:461–473

    Article  PubMed  Google Scholar 

  • Stanneck D, Rass J, Radeloff I, Kruedewagen E, Le Sueur C, Hellmann K, Krieger K (2012) Evaluation of the long-term efficacy and safety of an imidacloprid 10 %/flumethrin 4.5 % polymer matrix collar (Seresto(R)) in dogs and cats naturally infested with fleas and/or ticks in multicentre clinical field studies in Europe. Parasit. Vectors. 5:66

    Article  PubMed  CAS  Google Scholar 

  • Steere A, Angelis S (2006) Therapy for Lyme arthritis: strategies for the treatment of antibiotic-refractory arthritis. Arthritis Rheum 54:3079–3086

    Article  PubMed  CAS  Google Scholar 

  • Steere A, Malawista S, Snydman D, Shope R, Andiman W, Ross M, Steele F (1977) Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three connecticut communities. Arthritis Rheum 20:7–17

    Article  PubMed  CAS  Google Scholar 

  • Steere A, Sikand V, Meurice F, Parenti D, Fikrig E, Schoen R, Nowakowski J, Schmid C, Laukamp S, Buscarino C, Krause D (1998) Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med 339:209–215

    Article  PubMed  CAS  Google Scholar 

  • Steere A, Klitz W, Drouin E, Falk B, Kwok W, Nepom G, Baxter-Lowe L (2006) Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide. J Exp Med 203:961–971

    Article  PubMed  CAS  Google Scholar 

  • Stevenson B, Schwan T, Rosa P (1995) Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63:4535–4539

    PubMed  CAS  Google Scholar 

  • Straubinger R, Summers B, Chang Y, Appel M (1997) Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol 35:111–116

    PubMed  CAS  Google Scholar 

  • Straubinger R, Straubinger A, Summers B, Jacobson R, Erb H (1998) Clinical manifestations, pathogenesis, and effect of antibiotic treatment on Lyme borreliosis in dogs. Wien Klin Wochenschr 110:874–881

    PubMed  CAS  Google Scholar 

  • Strle K, Shin J, Glickstein L, Steere A (2012) Association of a Toll-like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthritis Rheum 64:1497–1507

    Article  PubMed  CAS  Google Scholar 

  • Szczepanski A, Furie M, Benach J, Lane B, Fleit H (1990) Interaction between Borrelia burgdorferi and endothelium in vitro. J. Clin. Invest. 85:1637–1647

    Article  PubMed  CAS  Google Scholar 

  • Taylor M (2001) Recent developments in ectoparasiticides. Vet. J. 161:253–268

    Article  PubMed  CAS  Google Scholar 

  • Trollmo C, Meyer A, Steere A, Hafler D, Huber B (2001) Molecular mimicry in Lyme arthritis demonstrated at the single cell level: LFA-1 alpha L is a partial agonist for outer surface protein A-reactive T cells. J. Immunol. 166:5286–5291

    PubMed  CAS  Google Scholar 

  • Urban E, Chapoval A, Pauza C (2010) Repertoire development and the control of cytotoxic/effector function in human gammadelta T cells. Clin. Dev. Immunol. 2010:732893

    Article  PubMed  CAS  Google Scholar 

  • van Burgel N, Balmus N, Fikrig E, van Dam A (2011) Infectivity of Borrelia burgdorferi sensu lato is unaltered in C3-deficient mice. Ticks Tick Borne Dis. 2:20–26

    Article  PubMed  Google Scholar 

  • Vijverberg H, van der Zalm J, van der Bercken J (1982) Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature 295:601–603

    Article  PubMed  CAS  Google Scholar 

  • Wesch D, Peters C, Oberg H, Pietschmann K, Kabelitz D (2011) Modulation of gammadelta T cell responses by TLR ligands. Cell Mol Life Sci 68:2357–2370

    Article  PubMed  CAS  Google Scholar 

  • Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW (2008) Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin. Immunol. 127:385–393

    Article  PubMed  CAS  Google Scholar 

  • Wooten R, Ma Y, Yoder R, Brown J, Weis J, Zachary J, Kirschning C, Weis J (2002) Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J. Immunol. 168:348–355

    PubMed  CAS  Google Scholar 

  • Wormser G, Dattwyler R, Shapiro E, Halperin J, Steere A, Klempner M, Krause P, Bakken J, Strle F, Stanek G, Bockenstedt L, Fish D, Dumler J, Nadelman R (2006) The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 43:1089–1134

    Article  PubMed  Google Scholar 

  • Yang X, Pal U, Alani S, Fikrig E, Norgard M (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199:641–648

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Norris S (1998a) Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun 66:3698–3704

    PubMed  CAS  Google Scholar 

  • Zhang J, Norris S (1998b) Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun 66:3689–3697

    PubMed  CAS  Google Scholar 

  • Zhang J, Hardham J, Barbour A, Norris S (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275–285

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Irvine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kean, I.R., Irvine, K.L. Lyme disease: aetiopathogenesis, factors for disease development and control. Inflammopharmacol 21, 101–111 (2013). https://doi.org/10.1007/s10787-012-0156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-012-0156-2

Keywords

Navigation