Skip to main content
Log in

Influence of inhaled beclomethasone and montelukast on airway remodeling in mice

  • Research Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

This study examined the effect of montelukast and beclomethasone on airway remodeling in murine model of asthma. Mice were sensitized by i.p. injection of ovalbumin (OVA) on days 0 and 14, and then challenged by nebulization of 1% OVA 3 days/week for 6 or 10 weeks. Results of 6-week OVA-challenged group showed moderate inflammation, but the 10-week OVA-challenged group exhibited mild inflammation. The OVA challenge (6 and 10 weeks) exhibited marked airway fibrosis, illustrated by significant increase in goblet cell hyperplasia and epithelial thickness, increased lung content of collagen and transforming growth factor-β1, together with a decrease in nitric oxide production; also, there was an increase in bronchoalveolar lavage fluid level of interleukin-13. Administration of montelukast or beclomethasone before each OVA challenge was capable of restoring most of the measured parameters to near normal levels. Inhalation of beclomethasone has a similar role in airway remodeling as montelukast, but its effects in regulating inflammatory changes is less pronounced than montelukast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asakura T, Ishii Y, Chibana K, Fukuda T (2004) Leukotriene D4 stimulates collagen production from myofibroblasts transformed by TGF-β. J Allergy Clin Immunol 114:310–315

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ (1995) Nitric oxide and airway disease. Ann. Med. 27:389–393

    Article  PubMed  CAS  Google Scholar 

  • Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am. J. Respir. Cell Mol. Biol. 3:507–511

    PubMed  CAS  Google Scholar 

  • Bueg JA and Aust SD (1978) Methods in enzymology, vol 52. Academic Press, New York, pp 302–314

  • Bulani V (2011) Inhibitory effect of Calotropis gigantea extract on ovalbumin-induced airway inflammation and arachidonic acid induced inflammation in a murine model of asthma. Int J Cur Bio Med Sci 1:19–25

    Google Scholar 

  • Chiappara G, Gagliardo R, Siena A, Bonsignore MR, Bousquet J, Bonsignore G, Vignola AM (2001) Airway remodelling in the pathogenesis of asthma. Curr Opin Allergy Clin Immunol 1:85–93

    PubMed  CAS  Google Scholar 

  • Elias JA, Zhu Z, Chupp G, Homer RJ (1999) Airway remodeling in asthma. J Clin Invest 104:1001

    Article  PubMed  CAS  Google Scholar 

  • Feder LS, Stelts D, Chapman RW, Manfra D, Crawley Y, Jones H, Minnicozzi M, Fernandez X, Paster T, Egan RW, Kreutner W, Kung TT (1997) Role of nitric oxide on eosinophilic lung inflammation in allergic mice. Am J Respir Cell Mol Biol 17(4):436–442

    PubMed  CAS  Google Scholar 

  • Gallop PM, Paz MA (1975) Posttranslational protein modification with special attention to collagen and elastin. Physiol Rev 55:418–487

    PubMed  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  • Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261

    Article  PubMed  CAS  Google Scholar 

  • Hillas J, Booth RJ, Somerfield S (1980) Comparative trial of intra-nasal beclomethasone dipropionate and sodium cromoglycate in patients with chronic perennial rhinitis. Clin Allergy 10:253–258

    Article  PubMed  CAS  Google Scholar 

  • Holgate ST (2002) Asthma: more than an inflammatory disease. Curr Opin Allergy Clin Immunol 2:27–29

    Article  PubMed  Google Scholar 

  • Holma R, Salmenperä P, Riutta A, Virtanen I, Korpela R, Vapaatalo H (2001) Acute effects of the cys-leukotriene-1 receptor antagonist, montelukast, on experimental colitis in rats. Eur J Pharmacol 429:309–318

    Article  PubMed  CAS  Google Scholar 

  • Hrvacić B, Bosnjak B, Tudja M, Mesić M, Merćep M (2006) Applicability of an ultrasonic nebulization system for the airways delivery of beclomethasone dipropionate in a murine model of asthma. Pharm Res 23:1765–1775

    Article  PubMed  Google Scholar 

  • Keller AC, Rodriguez D, Russo M (2005) Nitric-oxide paradox in asthma. Mem Inst Oswaldo Cruz Rio de Janeiro 100:19–23

    Article  CAS  Google Scholar 

  • Kenyon NJ, Ward RW, Last JA (2003) Airway fibrosis in a mouse model of airway inflammation. Toxicol Appl Pharmacol 186:90–100

    Article  PubMed  CAS  Google Scholar 

  • Kiwamoto T, Ishii Y, Morishima Y, Yoh K, Kikuchi N, Haraguchi N, Masuko H, Kawaguchi M, Nomura A, Sakamoto T, Takahashi S, Hizawa N (2011) Blockade of cysteinyl leukotriene-1 receptors suppresses airway remodelling in mice overexpressing GATA-3. Clin Exp Allergy 41:116–128

    Article  PubMed  CAS  Google Scholar 

  • Kumar RK, Foster PS (2001) Murine model of chronic human asthma. Immunol Cell Biol 79:141–144

    Article  PubMed  CAS  Google Scholar 

  • Kumar RK, Thomas PS, Seetoo DQ, Herbert C, McKenzie AN, Foster PS, Lloyd AR (2002) Eotaxin expression by epithelial cells and plasma cells in chronic asthma. Lab Invest 82:495–504

    Article  PubMed  CAS  Google Scholar 

  • Kuwano K, Bosken C, Pare P, Bai R, Wiggs B, Hogg J (1993) Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 148:1220–1225

    PubMed  CAS  Google Scholar 

  • Leblond IT, Gosset P, Berre LR, Janin A, Prangère T, Tonnel AB, Guery BPH (2009) Keratinocyte growth factor improves alterations of lung permeability and bronchial epithelium in allergic rat. Eur Respir J 30:31–39

    Article  Google Scholar 

  • Lee CG, Cho SJ, Kang MJ, Chapoval SP, Lee PJ, Noble PW, Yehualaeshet T, Lu B, Flavell RA, Milbrandt J (2004) Early growth response gene 1-mediated apoptosis is essential for transforming growth factor β1-induced pulmonary fibrosis. J Exp Med 200:377–389

    Article  PubMed  CAS  Google Scholar 

  • Lipkowitz MA, Navarra T (2001) The encyclopedia of allergies, 2nd edn. Facts on File, New York, p 178

    Google Scholar 

  • Locke NR, Royce SG, Wainewright JS, Samuel CS, Tang ML (2007) Comparison of airway remodeling in acute, subacute, and chronic models of allergic airways disease. Am J Res Cell Mol Biol 36:625–632

    Article  CAS  Google Scholar 

  • Maarsingh H, Zaagsma J, Meurs H (2009) Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br J Pharmacol 158:638–651

    Article  Google Scholar 

  • Masoli M, Fabian D, Holt S, Beasley R, Global Initiative for Asthma (GINA) Program (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59:469–478

    Article  PubMed  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 143:109–142

    Google Scholar 

  • Napolitano DR, Mineo JR, De Souza MA, Espinodola LS, Espinodola FS (2005) Down-modulation of nitric oxide production in murine macrophages treated with crude plant extracts from Brazillian cerrado. J Ethnopharmacol 99:37–41

    Article  PubMed  CAS  Google Scholar 

  • Offer S, Shoseyov D, Bibi H, Eliraz A, Madar Z (2003) Leukotriene receptor antagonist modulates iNOS in the lung and in a leukotriene-free cell model. Nitric Oxide 9:10–17

    Article  PubMed  CAS  Google Scholar 

  • Oh SR, Lee MY, Ahn K, Park BY, Kwon OK, Joung H, Lee J, Kim DY, Lee S, Kim JH, Lee HK (2006) Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma. Int Immunopharmacol 6:978–986

    Article  PubMed  CAS  Google Scholar 

  • Pearce ML, Yamashita J, Beazell J (1965) Measurement of pulmonary edema. Circ Res 16:482–488

    Article  PubMed  CAS  Google Scholar 

  • Perez JR, Shull S, Gendimenico GJ, Capetola RJ, Mezick JA, Cutroneo KR (1992) Glucocorticoid and retinoid regulation of alpha-2 type I procollagen promoter activity. J Cell Biochem 50:26–34

    Article  PubMed  CAS  Google Scholar 

  • Razzetti R, Bergamasch M, Villetti G, Bolzoni P, Civelli M, Berti F, Rossoni G (2007) Formoterol and beclomethasone dipropionate interact positively in antagonising bronchoconstriction and inflammation in the lung. Pharmacol Res 55:426–432

    Article  PubMed  CAS  Google Scholar 

  • Reddy GK, Enwemeka CS (1996) A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 29:225–229

    Article  PubMed  CAS  Google Scholar 

  • Roche W, Williams J, Beasley R, Holgate S (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1:520–524

    Article  PubMed  CAS  Google Scholar 

  • Rose MC, Nickola TJ, Voynow JA (2001) Airway mucus obstruction: mucin glycoproteins, MUC gene regulation and goblet cell hyperplasia. Am J Respir Cell Mol Biol 25:533–537

    PubMed  CAS  Google Scholar 

  • Shirakawa I, Deichmann KA, Izuhara I, Mao I, Adra CN, Hopkin JM (2000) Atopy and asthma: genetic variants of IL-4 and IL-13 signalling. Immunol Today 21:60–64

    Article  PubMed  CAS  Google Scholar 

  • Silkoff PE, McClean PA, Slutsky AS, Caramori M, Chapman KR, Gutierrez C, Zamel N (1998) Exhaled nitric oxide and bronchial reactivity during and after inhaled beclomethasone in mild asthma. J Asthma 35:473–479

    Article  PubMed  CAS  Google Scholar 

  • Southam DS, Ellis R, Wattie J, Glass W, Inman MD (2008) Goblet cell rebound and airway dysfunction with corticosteroid withdrawal in a mouse model of asthma. Am J Respir Crit Care Med 178:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Stellato C, Beck LA, Gorgone GA, Proud D, Schall TJ, Ono SJ, Lichtenstein LM, Schleimer RP (1995) Expression of the chemokine RANTES by a human bronchial epithelial cell line: modulation by cytokines and glucocorticoids. J Immunol 155:410–418

    PubMed  CAS  Google Scholar 

  • Takeda K, Shiraishi Y, Matsubara S, Miyahara N, Matsuda H, Okamoto M, Joetham A, Gelfand EW (2010) Effects of combination therapy with montelukast and carbocysteine in allergen-induced airway hyperresponsiveness and airway inflammation. Br J Pharmacol 160:1399–1407

    Article  PubMed  CAS  Google Scholar 

  • Temelkovski J, Hogan SP, Shepherd DP, Foster PS, Kumar RK (1998) An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax 53:849–856

    Article  PubMed  CAS  Google Scholar 

  • Townsend MJ, Fallon P, Matthews DJ, Smith P, Jolin HE, McKenzie AN (2000) IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13:573

    Article  PubMed  CAS  Google Scholar 

  • Tumes DJ, Cormie J, Calvert MG, Stewart K, Nassenstein C, Braun A, Foster PS, Dent LA (2007) Strain-dependent resistance to allergen-induced lung pathophysiology in mice correlates with rate of apoptosis of lung-derived eosinophils. J Leuko Biol 81:1362–1373

    Article  PubMed  CAS  Google Scholar 

  • Umland SP, Schleimer RP, Johnston SL (2002) Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma. Pulm Pharmacol Ther 15:35–50

    Article  PubMed  CAS  Google Scholar 

  • Vanacker NJ, Palmans E, Kips JC, Pauwels RA (2001) Fluticasone inhibits but does not reverse allergen-induced structural airway changes. Am J Respir Crit Care Med 163:674–679

    PubMed  CAS  Google Scholar 

  • Wang JH, Trigg CJ, Devalia JL, Jordan S, Davies RJ (1994) Effect of inhaled beclomethasone dipropionate on expression of proinflammatory cytokines and activated eosinophils in the bronchial epithelium of patients with mild asthma. J Allergy Clin Immunol 94:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Wiggs BR, Bosken C, Pare PD, James A, Hogg JC (1992) A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 145:1249–1250

    Google Scholar 

  • Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282:2258–2260

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Xu Y, Zhou H, Tao J, Li S (2006) Expression of urocortin in rat lung and its effect on pulmonary vascular permeability. J Endocrinol 189:167–178

    Article  PubMed  CAS  Google Scholar 

  • Yan Z-Q, Hansson GK, Skoogh BE, Lötvall JO (1995) Induction of nitric oxide synthase in a model of allergic occupational asthma. Allergy 50:760–764

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania R. Abdel Aziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel Aziz, R.R., Helaly, N.Y., Zalata, K.R. et al. Influence of inhaled beclomethasone and montelukast on airway remodeling in mice. Inflammopharmacol 21, 55–66 (2013). https://doi.org/10.1007/s10787-012-0127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-012-0127-7

Keywords

Navigation