Advertisement

Inflammopharmacology

, Volume 20, Issue 5, pp 277–287 | Cite as

Protective effect of aqueous extract of Spinacia oleracea leaves in experimental paradigms of inflammatory bowel disease

  • Kishor Vasant OtariEmail author
  • Priyanka Subhash Gaikwad
  • Rajkumar Virbhadrappa Shete
  • Chandrashekhar Devidas Upasani
Research Article

Abstract

The present study was aimed to assess the protective effect of aqueous extract of Spinacia oleracea leaves (AESO 250, 500, and 1,000 mg/kg, p.o.) in inflammatory bowel disease using acetic acid- and ethanol-induced colitis in mice and indomethacin-induced enterocolitis in rats. The preliminary phytochemical analysis and further high performance thin layer chromatographic (HPTLC) analysis and phytochemical tests of HPTLC bands confirmed the presence of flavonoids and tannins in AESO. In acute oral toxicity study, administration of AESO (5,000 mg/kg, p.o.) did not show any sign of toxicity and mortality. The treatment with AESO significantly increased body weight, decreased diarrhea with bloody stools, increased blood hemoglobin and plasma total protein, and decreased serum and ileum or colon malondialdehyde content and attenuated the extent of lesions and ameliorated the histological injury of mucosa in all paradigms. The most prominent effects were evident for AESO 1,000 mg/kg. The results of the present study revealed that AESO was effective in attenuating almost all the symptoms of IBD in experimental paradigms. The effect might be due to the antioxidant activity of the flavonoids present in the AESO.

Keywords

Spinacia oleracea Inflammatory bowel disease Antioxidant Ulcerative colitis Crohn’s disease 

Notes

Acknowledgments

Sincere thanks to RD’s College of Pharmacy, Bhor, India—412206 for providing necessary facilities required for research work. Authors are also grateful to Mr. Thite T., Sr. Lab Manager, Anchrom Enterprises (I) Pvt. Ltd, Mumbai, India for help in HPTLC analysis of extract and to Dr. Dhande N. L., Dhande Laboratory, Pune for help in histopathological studies.

References

  1. Andrade MC, Vaz NM, Faria AMC (2003) Ethanol induced colitis prevents oral tolerance induction in mice. Braz J Med Biol Res 36:1227–1232PubMedCrossRefGoogle Scholar
  2. Berardi RR (2000) Inflammatory bowel disease. In: Herfindal E, Gourley D (eds) The textbook of therapeutics: drug and disease management. Lippincott Williams and Wilkins, Philadelphia, pp 483–502Google Scholar
  3. Bergman M, Varshavsky L, Gottlieb HE, Grossman S (2001) The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry 58(1):143–152PubMedCrossRefGoogle Scholar
  4. Bergquist S (2006) Bioactive compounds in baby spinach (Spinacia oleracea L.), effects of pre- and post-harvest factors. Dissertation, Swedish University of Agricultural Sciences, AlnarpGoogle Scholar
  5. Bunea A, Andjelkovic M, Socaciu C, Bobis O, Neacsu M, Verhe R, Camp JV (2008) Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem 108(2):649–656CrossRefGoogle Scholar
  6. Cetinkaya A, Bulbuloglu E, Kurutas EB, Ciralik H, Kantarcekan B, Buyukbese MA (2005) Beneficial effects of N-acetylcysteine on acetic acid induced colitis in rats. Tohoku J Exp Med 206:131–139PubMedCrossRefGoogle Scholar
  7. Chatwal GR, Anand SK (2002) Instrumental methods of chemical analysis, 5th edn. Himalaya Publishing House, Mumbai, pp 2.600–2.660Google Scholar
  8. Clinton C (2009) Plant tannins: a novel approach to the treatment of ulcerative colitis. Nat Med 1(3):1–4Google Scholar
  9. Clive DM (1991a) Weight loss. In: Greene HL, Glassoke RJ, Kelly MA (eds) Introduction to clinical medicine. Tata McGraw-Hill Publishing Company Ltd., New Delhi, p 159Google Scholar
  10. Clive DM (1991b) Hypoalbuminemia. In: Greene HL, Glassoke RJ, Kelly MA (eds) Introduction to clinical medicine. Tata McGraw-Hill Publishing Company Ltd., New Delhi, p 273Google Scholar
  11. Danese S, Semeraro S, Papa A, Roberto I, Scaldaferri F, Fedeli G, Gasbarrini G, Gasbarrini A (2005) Extraintestinal manifestations in inflammatory bowel disease. World J Gastroenterol 11(46):7227–7236PubMedGoogle Scholar
  12. Das S, Guha D (2008) CNS depressive role of aqueous extract of Spinacia oleracea L. leaves in adult male albino rats. Indian J Exp Biol 46:185–190PubMedGoogle Scholar
  13. Friedman S, Blumberge RS (2005) Inflammatory bowel disease. In: Anthony SF, Eugene B, Dennis LK (eds) Harrison’s internal medicines, vol II, 16th edn. McGraw Hill Medical Publishing Division, New York, p 1776Google Scholar
  14. Galvez J, Cruz T, Crespo E, Ocete MA, Lorente MD, Medina FS, Zarzuelo A (1997) Rutoside as mucosal protective in acetic acid-induced rat colitis. Planta Med 63(5):409–414PubMedCrossRefGoogle Scholar
  15. Garg VK, Jain M, Sharma PK, Garg G (2010) Anti-inflammatory activity of Spinacia oleracea. Int J Pharma Prof Res 1(1):1–4Google Scholar
  16. Godkar BP, Godkar DP (2006) Textbook of medical laboratory technology, 2nd edn. Bhalani Publishing House, Mumbai, p 726Google Scholar
  17. Grossman S, Reznik R, Tamari T, Albeck M (1994) New plant water soluble antioxidant (NAO) from spinach. In: Asada K, Toshikawa T (eds) Frontiers of reactive oxygen species in biology and medicine. Elsevier Science, Amsterdam, pp 343–344Google Scholar
  18. Gupta RS, Singh D (2006) Amelioration of CCl4-induced hepatosuppression by Spinacia oleracea L. leaves in Wistar albino rats. Pharmacologyonline 3:267–278Google Scholar
  19. Harputluoglu MMM, Demirel U, Yucel N, Karadag N, Temel I, Firat S, Ara C, Aladag M, Karincaoglu M, Hilmioglu F (2006) The effects of Ginkgo biloba extract on acetic acid induced colitis in rats. Turk J Gastroenterol 17(3):177–182PubMedGoogle Scholar
  20. He T, Huang CY, Chen H, Hou YH (1999) Effects of spinach powder fat-soluble extract on proliferation of human gastric adenocarcinoma cells. Biomed Environ Sci 12(4):247–252PubMedGoogle Scholar
  21. Heo JC, Park CH, Lee HJ, Kim SO, Kim TH, Lee SH (2010) Amelioration of asthmatic inflammation by an aqueous extract of Spinacia oleracea Linn. Int J Mol Med 25(3):409–414PubMedGoogle Scholar
  22. Hong T, Jin GB, Cho S, Cyong JC (2002) Evaluation of the anti-inflammatory effect of baicalein on dextran sulfate sodium-induced colitis in mice. Planta Med 68(3):268–271PubMedCrossRefGoogle Scholar
  23. Imai T, Onose J, Hasumura M, Takizawa T, Hirose M (2006) Indomethacin induces small intestinal damage and inhibits amitrole-associated thyroid carcinogenesis in rats initiated with N-bis (2-hydroxypropyl) nitrosamine. Toxicol Lett 164(1):71–80PubMedCrossRefGoogle Scholar
  24. Jagtap AG, Shirke SS, Phadke AS (2004) Effect of polyherbal formulation on experimental models of inflammatory bowel diseases. J Ethnopharmacol 90:195–204PubMedCrossRefGoogle Scholar
  25. Jurjus AR, Khoury NN, Reimund JM (2004) Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods 50(2):81–92PubMedCrossRefGoogle Scholar
  26. Khandelwal KR (2001) Practical pharmacognosy techniques and experiments, 8th edn. Nirali Prakashan, Mumbai, pp 149–156Google Scholar
  27. Kirtikar KR, Basu BD (2005) Indian Medicinal plants, vol III. Internationl book Distributors, Book Seller and Publishers, Dehradun, pp 2078–2079Google Scholar
  28. Klein A, Eliakim R (2010) Non steroidal anti-inflammatory drugs and inflammatory bowel disease. Pharmaceuticals 3:1084–1092CrossRefGoogle Scholar
  29. Kokate CK, Purohit AP, Gokhale SB (2005) Text book of Pharmacognosy, 33rd edn. Nirali prakashan, Mumbai, pp 133–525Google Scholar
  30. Kwon KH, Murakami A, Tanaka T, Ohigashi H (2005) Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. Biochem Pharmacol 69:395–406PubMedCrossRefGoogle Scholar
  31. Laurence LB, Keith LP (2008) Goodman and Gilman’s manual of pharmacology and therapeutics. McGraw Hill Publication, New Delhi, pp 635–660Google Scholar
  32. Liu C, Crawford JM (2005) The gastrointestinal tract. In: Kumar V, Abbas AK, Fausto N (eds) Robbins and Cotran pathologic basis of disease. Elsevier Saunders, Philadelphia, pp 797–875Google Scholar
  33. Maruyama Y, Lindholm B, Stenvinkel P (2004) Inflammation and oxidative stress in ESRD—the role of myeloperoxidase. J Nephrol 17(8):S72–S76PubMedGoogle Scholar
  34. Medina FS, Galvez J, Romero JA, Zarzuelo A (1996) A effect of quercetin on acute and chronic experimental colitis in the rat. J Pharmacol Exp Ther 278(2):771–779Google Scholar
  35. Mohan H (2005) Textbook of pathology, 5th edn. Jaypee Brothers Medical Publishers, New Delhi, p 580Google Scholar
  36. Moss AC, Cheifetz AS (2007) Reducing the torment of diarrhea tormentil for active ulcerative colitis. J Clin Gastroenterol 41(9):797–798PubMedCrossRefGoogle Scholar
  37. OECD guideline for testing of chemicals (2001) Acute Oral Toxicity—Acute Toxic Class Method No. 423. CPCSEA guidelines, Section 15 of the Prevention of Cruelty to Animals Act, 1960, Ministry of environment and forest (AWD), Government of IndiaGoogle Scholar
  38. Paiva LA, Gurgel LA, De Sousa ET, Silveira ER, Silva RM, Santos FA, Rao VS (2004) Protective effect of Copaifera langsdorffii oleo-resin against acetic acid-induced colitis in rats. J Ethnopharmacol 93(1):51–56PubMedCrossRefGoogle Scholar
  39. Ran ZH, Chen C, Xiao SD (2008) Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomed Pharmacother 62(3):189–196PubMedCrossRefGoogle Scholar
  40. Sethi PD, Charegaonkar D (1999) Identification of drugs in pharmaceutical pharmulations by thin layer chromatography, 2nd edn. CBS Publishers and Distributors, New Delhi, pp 2–52Google Scholar
  41. Stenson WF, Zhang Z, Riehl T, Stanley SL (2001) Amebic infection in the human colon induces cyclooxygenase-2. Infect Immun 69(5):3382–3388PubMedCrossRefGoogle Scholar
  42. Sultana B, Anwar F (2008) Flavonols (kampeferol, quercetin, myricetin) contents of selected fruits, vegetables, and medicinal plants. Food Chem 108(3):879–884CrossRefGoogle Scholar
  43. Thiefin G, Beaugerie L (2005) Toxic effects of non steroidal anti-inflammatory drugs on the small bowel, colon, and rectum. Joint Bone Spine 72(4):286–294PubMedCrossRefGoogle Scholar
  44. Villegas I, Lastra CA, Orjales A, Casa CL (2003) A new flavonoid derivative, dosmalfate, attenuates the development of dextran sulphate sodium-induced colitis in mice. Int Immunopharmacol 3(13–14):1731–1741PubMedCrossRefGoogle Scholar
  45. Wall GC (2005) Lower gastrointestinal disorders. In: Koda-Kimble MA, Young LY, Kradjan WA, Guglielmo BJ, Alldredge BK, Corelli RL (eds) Handbook of applied therapeutics, 8th edn. Lipponcott William and Wilkins Publishers, New York, pp 28–31Google Scholar
  46. Xu L, Yang Z, Li P, Zhou Y (2009) Modulating effect of hesperidin on experimental murine colitis induced by dextran sulfate sodium. Phytomedicine 16(10):989–995PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Kishor Vasant Otari
    • 1
    Email author
  • Priyanka Subhash Gaikwad
    • 1
  • Rajkumar Virbhadrappa Shete
    • 1
  • Chandrashekhar Devidas Upasani
    • 1
  1. 1.Department of PharmacologyRajgad Dyanpeeth’s College of PharmacyPuneIndia

Personalised recommendations