Skip to main content
Log in

Methanolic extract of leaves of Jasminum grandiflorum Linn modulates oxidative stress and inflammatory mediators

  • Research Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

The leaves of Jasminum grandiflorum (JG) are in clinical use in Ayurveda for wound management. Since, oxidative stress and inflammation are the primary causes in delayed wound healing, so here its antioxidant and anti-inflammatory activities have been investigated using in vitro as well as in vivo models. The solvent-free methanolic extract of dried leaves of JG were tested for its trapping capacity toward pre-generated ABTS•+ radicals, instantly generated superoxide and hydroxyl radicals, along with metal chelation property, reducing power and total phenolic content. Further, it was tested on LPS-induced nitric oxide and cell viability, on primary culture of rat peritoneal macrophages. Its anti-inflammatory property was also tested on carrageenan-induced paw edema in rats. This extract significantly inhibited iron-induced lipid peroxidation and trapped ABTS•+, superoxide and OH radicals. It significantly inhibited nitric oxide (NO) release, without affecting the cell viability at 800 μg/ml concentration and reduced the formation of paw edema in rats. Thus, it could be suggested that the aforesaid anti-inflammatory properties of JG leaves are associated to its high phenolic content (2.25 ± 0.105 mg/l of gallic acid equivalent), reducing power and its free radical-scavenging property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Brinda S, Ulla WS, George V, Pushpangadan P, Rajasekharan S (1998) Angiotensin converting enzyme inhibitors from Jasminum azoricum and Jasminum grandiflorum. Planta Med 64:246–250

    Article  Google Scholar 

  • Crunkhon P, Meacock SER (1971) Mediators of the inflammation induced in the rat paw by carrageenan. Br J Pharmacol 42:393–402

    Google Scholar 

  • Cuzzocrea S, Mazzon E, Calabro G, Dugo L, De Sarro A, van De LOO FA, Caputi AP (2000) Inducible nitric oxide synthase-knockout mice exhibit resistance to pleurisy and lung injury caused by carrageenan. Am J Respir Crit Care Med 162:1859–1866

    PubMed  CAS  Google Scholar 

  • Geneive E, Henry, Rafikaali A, Momin, Muralieeddharan G, Nair, David L, Dewitt (2002) Antioxidant and cyclooxygenase activities of fatty acid found in food. J Agric Food Chem 50:2231–2234

  • Griess JP, Bemerkungen zu der Abhandlung der HH (1879) Wesely und Benedik “ÜbAzoverbindungen”. Berichte der Deutschen Chemischen Gesellschaft 12:426–428

    Article  Google Scholar 

  • Halliwell B, Gutteridge MC, Aruoma OI (1987) The deoxyribose method: a simple test-tube assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  PubMed  CAS  Google Scholar 

  • Hollander C, Nystrom M, Janciauskiene S, Western U (2003) Human mast cell decrease SLPI levels in type II like alveolar cell model in vitro. Can Cell Int 3:14–22

    Article  Google Scholar 

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid per oxidation and tissue injury. Free Radic Biol Med 9:515–540

    Article  PubMed  CAS  Google Scholar 

  • Khandelwal KR (2004) Practical pharmacognosy, 11th edn. Nirali Prakashan, Pune, pp 149–156

    Google Scholar 

  • Kolanjiappan K, Manoharan S (2005) Chemopreventive efficacy and anti-lipid peroxidative potential of Jasminum grandiflorum Linn. on 7, 12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis. Fundam Clin Pharmacol 19(6):687–693

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Ilavarasan R, Jayachandran T, Deecaraman M, Mohan KR, Aravindan P, Padmanabhan N, Krishan MRV (2008) Anti-inflammatory activity of Syzygium cumini seed. Afr J Biotechnol 7:941–943

    Google Scholar 

  • Kumar P, Praveen, Kumaravel S, Lalitha C (2010) Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biochem Res 4(7):191–195

  • Lis-Balchin M, Hart S, Lo WHB (2002) Jasmine absolute (Jasminum grandiflorum L.) and its mode of action on guinea-pig ileum in vitro. Phytotherap Res 16:437–439

    Article  CAS  Google Scholar 

  • Masahiro O, Midori H, Shiro U, Toyoshige E (2000) Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem Pharm Bull 48:1467–1469

    Google Scholar 

  • Meir S, Kanner J, Akiri B, Philosoph-Hadas S (1995) Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agric Food Chem 43:1813–1819

    Article  CAS  Google Scholar 

  • Moyana T, Lalonde JM (1991) Carrageenan-induced intestinal injury: possible role of oxygen free radicals. Ann Clin Lab Sci 21(4):258–263

    PubMed  CAS  Google Scholar 

  • Ohkowa H, Ohisi N, Yagi K (1979) Assay for lipid peroxides in animals tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  Google Scholar 

  • Oyaizu M (1986) Jpn J Nutr 44:307–315

    Google Scholar 

  • Pandey GS, Chuneka KC (eds) (1998) Bhav prakash nighantu. Chaukambha Vidya, Varanasi, pp 491–492

  • Pandey RS, Singh BK, Tripathi Yamini B (2005) Effect of gum rasin of Boswellia serrata L. inhibits LPS induced NO production in rat Macrophages along with hypolipidemic property. Indian J Exp Biol 43:509–516

    PubMed  Google Scholar 

  • Pandey N, Chaurasia JK, Tiwari OP, Tripathi Yamini B (2007) Antioxidant properties of different fractions of tubers from Peureria tuberose Linn. Food Chem 105:219–222

    Article  CAS  Google Scholar 

  • Rafat S, Cillard J, Cillard P (1987) Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26:2489–2491

    Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9/10):1231–1237

    Google Scholar 

  • Ruberto G, Baratta MT, Deans SG, Dorman HJD (2000) Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med 66:687–693

    Article  PubMed  CAS  Google Scholar 

  • Sadhu SK, Khan MS, Ohtsuki T, Ishibashi M (2007) Secoiridoids component from J. grandiflorum. Phytochemistry 68:1718–1721

    Article  CAS  Google Scholar 

  • Scuro LS, Simioni PU, Grabriel DL et al (2004) Suppression of nitric oxide production in mouse macrophages by soybean flavonoids accumulated in response to nitroprusside and fungal elicitation. BMC Biochem 5:5

    Article  PubMed  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods enzymol oxidants antioxidants. Part A, vol 299. Academic Press, San Diego

  • Spiteller G (1998) Linoleic acid peroxidation—the dominant lipid peroxidation processes in low density lipoprotein—and its relationship to chronic diseases. Chem Phys Lipid 95:105–162

    Article  CAS  Google Scholar 

  • Takao T, Takeshi S, Yukiko T, Naotaka N, Cheng-Chang C (1999) Structure elucidation of two secoiridoid glucosides from Jasminum officinale L. var. grandiflorum (L.) Kobuski. Chem Pharm Bull 47(11):1582–1586

    Google Scholar 

  • Tripathi YB, Tripathi P, Korlagunta K, Chai SC, Smith BJ, Arjmandi BH (2008) Role of Sandhika: a polyherbal formulation on MC3T3-E1 Osteoblast-like cells. Inflammation 31(1):1–8

    Article  PubMed  Google Scholar 

  • Umamaheswari M, Asokkumar K, Rathi Devi R, Sivashanmugam AT, Ravi VTK (2007) Antiulcer and in vitro antioxidant activities of Jasminum grandiflorum L. J Ethnopharmacol 110:464–470

    Article  PubMed  CAS  Google Scholar 

  • Vinegar R, Schreiber W, Hugo R (1969) Biophasic development of carrageenan oedema on rats. J Pharmacol Exp Ther 66:96–103

    Google Scholar 

  • Visioli F, Bellosta S, Galli C (1998) Oleuropein, the bitter principles of olives, enhances nitric oxide production by mouse macrophages. Life Sci 62:541–546

    Article  PubMed  CAS  Google Scholar 

  • Visioli F, Poli A, Galli C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75

    Article  PubMed  CAS  Google Scholar 

  • Zhao GQ, Dong JX (2008) Triterpenoid saponins from flower bud of Jasminum officinale var. grandiflorum. Zhongguo Zhong Yao Za Zhi 33(1):38–42

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamini Bhusan Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, A.P., Tripathi, Y.B. Methanolic extract of leaves of Jasminum grandiflorum Linn modulates oxidative stress and inflammatory mediators. Inflammopharmacol 19, 273–281 (2011). https://doi.org/10.1007/s10787-011-0087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-011-0087-3

Keywords

Navigation