Skip to main content
Log in

Antioxidant, anti-inflammatory and analgesic potential of the Citrus decumana L. peel extract

  • Research Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

The present study was designed to investigate the antioxidant, anti-inflammatory and analgesic potential of Citrus decumana peel extract. Antioxidant activity of Citrus decumana peel extract in four solvent systems was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and hydrogen peroxide (H2O2) radical scavenging methods. Ethyl acetate peel extract of Citrus decumana (EtCD) was studied for its anti-inflammatory and analgesic activities at a dose level of 100, 200 and 300 mg/kg. Anti-inflammatory activity was performed using carrageenan-induced paw edema in rats. Analgesic activity was evaluated for its central and peripheral pharmacological actions in mice. EtCD showed significant antioxidant activity in a dose-dependent manner when compared with ascorbic acid. EtCD at the dose of 300 mg/kg produced significant decrease in paw volume and pain when compared with reference drug diclofenac and morphine, respectively. The Citrus decumana peel extract may be useful as a natural antioxidant in the treatment of inflammation and pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allesandra B, Cuvelier ME, Richard H et al (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129

    Article  Google Scholar 

  • Benavente-Garcia O, Castillo J (2008) Updates on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56:6185–6205

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Pearson AM, Gray JI (1992) Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chem 43:177–183

    Article  CAS  Google Scholar 

  • Chen K, Plumb GW, Bennett RN et al (2005) Antioxidant activities of extracts from five anti-viral medicinal plants. J Ethnopharmacol 96:201–205

    Article  PubMed  Google Scholar 

  • Chung JM (2004) The role of reactive oxygen species (ROS) in persistent pain. Mol Interv 4:248–250

    Article  PubMed  CAS  Google Scholar 

  • Crunkhorn P, Meacock SC (1971) Mediators of the inflammation induced in the rat paw by carrageenin. Br J Pharmacol 42:392–402

    PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Riley DP, Caputi AP et al (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation and ischemia/reperfusion injury. Pharmacol Rev 53:135–159

    PubMed  CAS  Google Scholar 

  • Czochra MP, Widensk AJ (2002) Spectrophotometric determination of H2O2 activity. Anal Chem Acta 452:177–184

    Article  Google Scholar 

  • Dan B, Andrew G (1986) Chinese herbal medicine. Eastland Press, Seattle, pp 334–335

    Google Scholar 

  • Davies OL, Raventos J, Walpole AL (1946) A method for the evaluation of analgesic activity using rats. Br J Pharmacol 1:255–264

    CAS  Google Scholar 

  • Dreosti IV (1992) Bioactive ingredients: antioxidants and polyphenols in tea. Nutr Rev 54:51–58

    Article  Google Scholar 

  • Eddy NB, Leimbach D (1953) Synthetic analgesics. II. dithienylbutenyl- and dithienylbutylamines. J Pharmacol Exp Ther 107:385–393

    PubMed  CAS  Google Scholar 

  • Galati EM, Monforte MT, Kirjavaine S et al (1994) Biological effects of hesperidin, a citrus flavonoid. (Note I): anti-inflammatory and analgesic activity. IL Farmaco 40:709–712

    PubMed  CAS  Google Scholar 

  • Gao X, Kim HK, Chung JM (2007) Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 131:261–271

    Article  CAS  Google Scholar 

  • Gattuso G, Barreca D, Gargiulli C et al (2007) Flavonoid composition of citrus juices. Molecules 12:1641–1673

    Article  PubMed  CAS  Google Scholar 

  • Grotto M, Sulman FG (1967) Modified receptacle method for animal analgesimetry. Arch Int Pharmacodyn Ther 165:152–159

    PubMed  CAS  Google Scholar 

  • Gulcin I (2006) Antioxidant and antiradical activities of l-carnitine. Life Sci 78:803–811

    Article  PubMed  CAS  Google Scholar 

  • Halliwel B (1994) Free radicals, antioxidants and human diseases: curiosity, cause or consequence? Lancet 344:721–724

    Article  Google Scholar 

  • Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 16:845–850

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1973) Phytochemical methods. Chapman and Hall, Ltd., London, pp 49–188

    Google Scholar 

  • Hargreaves K, Dubner R, Brown F (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Park SK, Zhou JL (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111:116–124

    Article  PubMed  CAS  Google Scholar 

  • Koblyakov VA (2001) Free radicals and inflammation (progress in inflammation research series). Biochemistry 66:937–938

    CAS  Google Scholar 

  • Kumar PS, Sucheta S, Deepa VS (2008) Antioxidant activity in some selected Indian medicinal plants. Afr J Biotechnol 7:1826–1828

    Google Scholar 

  • Li S, Lo CY, Ho CT (2006) Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem 54:4176–4185

    Article  PubMed  CAS  Google Scholar 

  • Miliauskas G, Venskutonis PR, Van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  • Mokbel MS, Hashinaga F (2006) Evaluation of the antioxidant activity of extracts from buntan (Citrus garandis Osbeck) fruit tissues. Food Chem 94:529–534

    Article  CAS  Google Scholar 

  • Parmar HS, Kar A (2008) Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with Respect to alteration in tissue lipid peroxidation and serum concentration of glucose, Insulin, and thyroid hormones. J Med Chem 11:376–381

    CAS  Google Scholar 

  • Pokorny J (1991) Natural antioxidant for food use. Trends Food Sci Technol 9:223–227

    Article  Google Scholar 

  • Proteggente AR, Saija A, Pasquale AD et al (2003) The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (Citrus sinensis L. Osbeck) varieties. Free Radic Res 37:681–687

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA (1997) Cigarette smoke radicals and role of free radicals in chemical carcinogenicity. Environ Health Perspect 105:875–882

    Article  PubMed  CAS  Google Scholar 

  • Rehman Z (2006) Citrus peel extract: a natural source of antioxidant. Food Chem 99:450–454

    Article  CAS  Google Scholar 

  • Richard R, Vaclav H, Ivana P et al (2003) Free radicals after painful stimulation are influenced by antioxidants and analgesics. Neuroendocrinol Lett 24:304–309

    Google Scholar 

  • Shahidi F, Janitha PK, Wanasundara PD (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67–103

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Fujikawa K, Yahara K (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  • Sood S, Muthuraman A, Arora B et al. (2009) Potential effect of Citrus decumana extract on stress induced peptic ulcer in rat. Lat Am J Pharm (in press)

  • Winrow VR, Winyard PG, Morris CJ et al (1993) Free radicals in inflammation: second messengers and mediators of tissue destruction. Br Med Bull 49:506–522

    PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hindpaw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    PubMed  CAS  Google Scholar 

  • Yesil-Celiktas O, Bedir E, Vardar-Sukan F (2007) In vitro antioxidant activities of Rosmarinus officinalis extracts treated with supercritical carbon dioxide. Food Chem 101:1457–1464

    Article  CAS  Google Scholar 

  • Zayachkivska OS, Konturek SJ, Drozdowicz D (2005) Gastroprotective effects of flavonoids in plant extracts. J Physiol Pharmacol 56:219–231

    PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Professor P. K. Karar and all faculty members of Rayat Institute of Pharmacy for their encouragement and support. We are also grateful to Rayat and Bahra Educational and Research Trust for their unconditional help to carryout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailja Sood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, S., Arora, B., Bansal, S. et al. Antioxidant, anti-inflammatory and analgesic potential of the Citrus decumana L. peel extract. Inflammopharmacol 17, 267–274 (2009). https://doi.org/10.1007/s10787-009-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-009-0015-y

Keywords

Navigation