Skip to main content

Advertisement

Log in

Interdisciplinary review for correlation between the plant origin capsaicinoids, non-steroidal antiinflammatory drugs, gastrointestinal mucosal damage and prevention in animals and human beings

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Background

The plant origin capsaicinoids (capsaicin, dihydrocapsaicin, norcapsaicin, dihydrocapsaicin, homocapsaicin, homodihydrocapsaicin) are well known and used as nutritional additive agents in the every day nutritional practice from the last 9,500 years; however, we had have a very little scientifically based knowledge on their chemistry, physiology and pharmacology in animal observations, and in humans up to the mid-twentieth century. Our knowledge about their chemistry, physiology, pharmacology entered to be scientifically based evidence from the year 1980, dominantly in animal observations. The human observations with capsaicin (capsaicinoids), in terms of good clinical practice, have been started only in the last 10-year period (from 1997) in randomized, prospective, multiclinical studies. The name of “capsaicin” used only in the physiological and pharmacological research both in animal experiments and in human observation. The “capsaicin” (as a “chemically” used natural compound) modifies the so-called capsaicin-sensitive afferent nerves depending on their applied doses.

Aims

The specific action of capsaicin (capsaicinoids) on sensory afferent nerves modifying gastrointestinal (GI) function (under very specific conditions) offers a possibility for the production of an orally applicable drug or for other drug combinations, which can be used in the human medical therapy. The production of new drug is based on the critical interdisciplinary review of the results obtained with capsaicinoids.

Materials and methods

This paper gives an interdisciplinary and critical overview on the chemical, physiological, pharmacological and toxicological actions of the natural origin capsaicinoids (from the point of drug production) under conditions of acute, subacute and chronic administration in animal experiments and human observations, toxicology, pharmacokinetics). This interdisciplinary review covers the following main chapters: (1) physiological and pharmacological research tool by capsaicin in the animals and human beings, (2) capsaicin research in animals (including the acute, subacute toxicology and chronic toxicology metabolism, genotoxicology), (3) capsaicin observation with capsaicin in human beings.

Conclusion

(1) The capsaicin used in the physiological and pharmacological observations (in animals and human beings) chemically represents different chemical compounds, which can be obtained from the plants (paprika, chilli, etc.), (2) capsaicinoids are able to modify the capsaicin-sensitive afferent nerves, which have principle roles in the defence of different organs (including the gastrointestinal tract [against the different chemicals, heat, strech, chemical millieu-induced damage], (3) the application of capsaicin (capsaicinoids) can be repeated for the beneficial effects on the gastrointestinal tract as those in animal experiments. After this interdisciplinary and critical review, this paper demonstrates the well-planned research pathways of the discoveries of capsaicinoids from plant chemistry, via physiology, pharmacology and toxicology in animal experiments and human observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdel-Salam OME, Szolcsányi J, Barthó L, Mózsik Gy. Sensory nerve-mediated mechanisms, gastric mucosal damage and its protection: a critical overview. Gastroprotection. 1994;2:4–12.

    Google Scholar 

  • Abdel-Salam OME, Mózsik Gy, Szolcsányi J. The effect of intragastrically administered capsaicin analogue in HCl and non-HCl dependent models of gastric mucosal injury. Z Gastroenterol. 1995a;33:80.

    Google Scholar 

  • Abdel-Salam OME, Mózsik Gy, Szolcsányi J. Capsaicin and its analogue resiniferatoxin inhibit gastric acid secretion in pylorus-ligated rats. Pharmacol Res. 1995b;31:341–5.

    Google Scholar 

  • Abdel-Salam OME, Mózsik Gy, Szolcsányi J. Effect of resiniferatoxin on stimulated gastric acid secretory responses in the rat. J Physiology (Paris). 1995c;88:353–8.

    Google Scholar 

  • Abdel-Salam OME, Mózsik Gy, Szolcsányi J. Studies on the effect of intragastric capsaicin on gastric ulcer and on the prostacyclin-induced cytoprotection in rats. Pharmacol Res. 1995d;32:209–15.

    PubMed  CAS  Google Scholar 

  • Abdel Salam OME, Bódis B, Karádi O, Szolcsányi J, Mózsik Gy. Modification of aspirin and ethanol-induced mucosal damage in rats by intragastric application of resiniferatoxin. Inflammopharmacology. 1995e;3:135–47.

    CAS  Google Scholar 

  • Abdel Salam OME, Bódis B, Karádi O, Szolcsányi J, Mózsik Gy. Nature of gastric H+ back-diffusion approached by cimetidine, vagotomy, RTX and sucralfate. Ceská Slovenská Gastroenterologie. 1995f;49:175–85.

    Google Scholar 

  • Abdel Salam OME, Bódis B, Karádi O, Nagy L, Szolcsányi J, Mózsik Gy. Stimulation of capsaicin-sensitive sensory peripheral nerves with topically applied resiniferatoxin decreases salicylate-induced gastric H+ back-diffusion in the rat. Inflammopharmacology. 1995g;3:121–33.

    CAS  Google Scholar 

  • Abdel Salam OME, Szolcsányi J, Mózsik Gy. Differences in action of topical and system cystamine on gastric blood flow, gastric acid secretion and gastric ulceration in the rat. J Physiology (Paris). 1996a;90:63–73.

    CAS  Google Scholar 

  • Abdel-Salam OME, Szolcsányi J, Porszász R, Mózsik Gy. Effect of capsaicin and resiniferatoxin on gastrointestinal blood flow in rats. Eur J Pharmacol. 1996b;305:127–36.

    PubMed  CAS  Google Scholar 

  • Abdel-Salam OME, Mózsik Gy, Szolcsányi J. The effect of capsaicin and resiniferatoxin on the indomethacin-induced gastric mucosal damage in rats. In: Mózsik Gy, Nagy L, Király Á, editors. Cell injury and protection in gastrointestinal tract. From basic science to clinical perspectives. Dordrecht: Kluwer Academic Publisher; 1997a. p. 95–105.

  • Abdel-Salam OME, Mózsik Gy, Szolcsányi J. The role of afferent sensory nerve in gastric mucosal protection. In: Mózsik Gy, Nagy L, Király Á, editors. Twenty-five years of peptic ulcer research in Hungary. From basic science to clinical practice 1971–1995. Budapest: Akadémiai Kiadó; 1997b. p. 295–308.

    Google Scholar 

  • Abdel-Salam OME, Szolcsányi J, Mózsik Gy. The effect of resiniferatoxin on experimental gastric ulcer in rats. In: Gaginella T, Mózsik Gy, Rainsford KD, editors. Biochemical pharmacology as approach to gastrointestinal disease. From basic science to clinical perspectives. Dordrecht: Kluwer Academic Publisher; 1997c. p. 269–85.

    Google Scholar 

  • Abdel-Salam OME, Szolcsányi J, Mózsik Gy. The indomethacin-induced gastric mucosal damage in rats. Effect of gastric acid, acid inhibition, capsaicin-type agents and prostacyclin. J Physiology (Paris). 1997d;97:7–19.

    Google Scholar 

  • Abdel-Salam OME, Debreceni A, Mózsik Gy. Capsaicin-sensitive afferent sensory nerves in modulating gastric mucosal defense against noxious agents. J Physiol. 1999;93:443–54.

    CAS  Google Scholar 

  • Abdel-Salam OME, Czimmer J, Debreceni A, et al. Gastric mucosal integrity: Gastric mucosal blood flow and microcirculation. An overview. J Physiol. 2001;95:105–27.

    CAS  Google Scholar 

  • Abdel-Salam OME, Sleem AA, Hassan NB, Sharaf HA, Mózsik Gy. Capsaicin ameliorates hepatic injury caused by carbon tetrachloride in the rat. J Pharmacol Toxicol. 2006;1:147–56.

    CAS  Google Scholar 

  • Aijoka H, Miyake H, Matsuura N. Effect of FRG-8813, a new-type histamine H2-receptor antagonist, on the recurrence of gastric ulcer healing by drug treatment. Pharmacology. 2000;61:83–90.

    Google Scholar 

  • Aijoka H, Matsuura N, Miyake H. High quality of ulcer healing in rats by lafutidine and new-type histamine H2-receptor antagonist: involvement of capsaicin of sensitive sensory neurons. Inflammopharmacology. 2002;10:483–93.

    Google Scholar 

  • Alföldi P, Obál F Jr, Tóth E, Hideg J. Capsaicin pretreatment reduces the gastric acid secretion elicited by histamine but does not affect the responses to carbachol and pentagastrin. Eur J Pharmacol. 1986;123:321–632.

    PubMed  Google Scholar 

  • Alföldi P, Tóth E, Obál F, Hideg J. Capsaicin treatment reduces histamine-induced gastric acid secretion in the rat. Acta Physiol Hung. 1987;69:509–12.

    Google Scholar 

  • Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/microsoma test assay of 300 chemicals. Mutat Res. 1975;31:347–64.

    PubMed  CAS  Google Scholar 

  • Anonymous. Metabolism and toxicity of capsaicin. Nutr Rev. 1986;44:20–2.

    Google Scholar 

  • Ato A, Yamamoto M. Acute oral toxicity of capsaicin in mice and rats. J Toxicol Sci. 1996;21:195–200.

    Google Scholar 

  • Azizan A, Blevins RD. Mutagenicity and antimutagenicity testings of six chemicals associated with the pungent properties of specific spices as revealed by the Ames salmonella microsomal assay. Arch Environ Contam Toxicol. 1995;28:248–58.

    PubMed  CAS  Google Scholar 

  • Berkesy L. Effect of paprika on gastric secretion (in Hungarian). Orv Hetil Hung Weekly Med J. 1934;78:397–9.

    Google Scholar 

  • Bevan S, Szolcsányi J. Sensory neuron-specific actions of capsaicin: mechanisms and application. Trends Pharmacol Sci. 1990;11:330–3.

    PubMed  CAS  Google Scholar 

  • Bevan S, Yeats J. Protons activate a cation conductance in a subpopulation of rat dorsal root ganglion neurons. J Physiology (London). 1990;433:145–61.

    Google Scholar 

  • Bley KR. Recent developments in transient receptor potential vanilloid 1 agonist-based therapies. Expert Opin Investig Drugs. 2004;13:1445–56.

    PubMed  CAS  Google Scholar 

  • Boersch A, Calligham BA, Lembeck F, Sharman DF. Enzymatic oxidation of capsaicin. Biochem Pharmacol. 1991;41:1863–969.

    PubMed  CAS  Google Scholar 

  • Brash AR, Baertschi SW, Ingram Cd, Harris TM. Isolation and characterization of natural allene oxides: unstable intermediates in the metabolism of lipid hydroperoxides. Proc Natl Acad Sci USA. 1988;85:3382–6.

    PubMed  CAS  Google Scholar 

  • Bruggeman TM, Wood JG, Davenport HW. Local control of blood flow in the dog’s stomach: vasodilatation caused by acid back-diffusion following topical application of salicylic acid. Gastroenterology. 1979;77:736–44.

    PubMed  CAS  Google Scholar 

  • Buck SH, Burks TF. The Neuropharmacology of capsaicin: review of some recent observation. Pharmacol Rev. 1986;38:179–226.

    PubMed  CAS  Google Scholar 

  • Buck SH, Miller MS, Burks TF. Depletion of primary afferent substance P by capsaicin and dihydrocapsaicin without altered thermal sensitivity. Brain Res. 1982;233:216–20.

    PubMed  CAS  Google Scholar 

  • Buiatti E, Palli D, Dacarli A, Amaddori D, Avelini C, Biachi S, et al. A case-control study of gastric cancer and diet in Italy. Int J Cancer. 1989;44:611–6.

    PubMed  CAS  Google Scholar 

  • Cabanac M, Cormareche-Leyder M, Poirior LJ. The effect of capsaicin on the temperature regulation of the rat. Flügers Arch ges Physiol. 1976;366:217–21.

    CAS  Google Scholar 

  • Castle NA. Differential inhibition of potassium currents in rat ventricular myocytes by capsaicin. Cardivasc Res. 1992;26:1137–44.

    CAS  Google Scholar 

  • Caterina MJ, Schumacker MA, Tomigana M, Rosen TA, Levine JD, Julius D. Capsaicin receptor: a heat activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    PubMed  CAS  Google Scholar 

  • Chanda S, Erexson G, Riach C, Innnes D, Stevenson F, Murli H, et al. Genotoxicity studies with pure trans-capsaicin. Mutat Res. 2004;557:85–97.

    PubMed  CAS  Google Scholar 

  • Chanda S, Mould A, Esmail A, Bley K. Toxicity studies with pure trans-capsaicin delivered to dogs via intravenous administration. Reg Toxicol Pharmacol. 2005;43:66–75.

    CAS  Google Scholar 

  • Chard PS, Bleakman D, Saridge JR. Capsaicin-induced neurotoxicity in cultured dorsal root ganglion neurons: involvement of calcium-activated proteases. Neuroscience. 1995;65:1099–108.

    PubMed  CAS  Google Scholar 

  • Cheng YP, Wang YH, Cheng LP, He RR. Electrophysiologic effects of capsaicin on pacemaker cells in sinoatrial nodes of rabbits. Acta Pharmacol Sin. 2003;24:826–30.

    PubMed  CAS  Google Scholar 

  • Chudapongse P, Janthasoot W. Mechanism of the inhibitory action on capsaicin on energy metabolism by rat liver mitochondria. Biochem Pharmacol. 1981;30:735–40.

    PubMed  CAS  Google Scholar 

  • Clive D, Flamm WG, Machesko MR, Bernheim NJ. A mutational assay system using the thymidine kinase locus in mouse lymphoma cells. Mutat Res. 1972;16:77–87.

    PubMed  CAS  Google Scholar 

  • Clive D, Johnson KO, Spector JF, Batson AG, Brown MM. Validation and characterization of the L5178Y/TK± mouse lymphoma and mutagens assay system. Mutat Res. 1979;59:61–108.

    PubMed  CAS  Google Scholar 

  • Cordell GA, Araujo OD. Capsaicin: identification, nomenclature, and pharmacology. Ann Pharmacother. 1993;27:330–6.

    PubMed  CAS  Google Scholar 

  • Couzin J. Withdrawal of vioxx casts shadow over COX-1 inhibitors. Science. 2004a;306:3844–50.

    Google Scholar 

  • Couzin J. Nail-biting time for trials of COX-2 drug. Science. 2004b;306:1673–5.

    PubMed  CAS  Google Scholar 

  • Csáky TZ. Introduction to general pharmacology. New York: Appleton Century-Craft Educational Division, Meredith Corporation; 1969. p. 17–34.

    Google Scholar 

  • De AK, Ghosh JJ. Inflammatory responses induced by substance P in rat paw. Indian J Exp Biol. 1990;28:946–8.

    PubMed  CAS  Google Scholar 

  • De Lille J, Ramirez E. Pharmacodynamic action of the active principle of chilli (Capsicum annum). Chemistry. 1935;4836 (abstract).

  • Debreceni A, Juricskay I, Figler M, Abdel-Salam OME, Szolcsányi J, Mózsik Gy. A direct stimulatory effect of small dose of capsaicin on gastric emptying rate in healthy human subjects measured by 13C labeled octanoid acid breath test. J Physiol. 1999;93:455–60.

    CAS  Google Scholar 

  • Desai HG, Venugopalam K, Anita FP. Effect of red chili powder on NDA content of gastric aspirates. Gut. 1973;14:974–6.

    PubMed  CAS  Google Scholar 

  • Dömötör A, Szolcsányi J, Mózsik Gy. Capsaicin and glucose absorption and utilization in healthy human subjects. Eur J Pharmacol. 2006;534:208–83.

    Google Scholar 

  • Donnerer J, Lembeck F. Capsaicin-induced reflex fall in rat blood pressure is mediated by afferent substances P-containing neurones via a reflex centre in the brain stem. Naunyn-Schmiedeber’s Arch Pharmacol. 1983;324:293–5.

    CAS  Google Scholar 

  • Donnerer J, Amann R, Schuligoi R, Lembeck F. Absorption and metabolism of capsaicinoids following intragastric administration in rats. Naunin-Schmiedeberg’s Arch Pharmacol. 1990;342:357–61.

    CAS  Google Scholar 

  • Dugani AM, Galvin GB. Capsaicin effects on stress pathology and gastric acid secretion in rats. Life Sci. 1986;39:1531–8.

    PubMed  CAS  Google Scholar 

  • Endoh K, Leung FW. Topical capsaicin protects the distal but not the proximal colon against acetic acid injury. Gastroenterology. 1990;98:A 446.

    Google Scholar 

  • Espinosa-Aquire JJ, Reyes RE, Rubio J, Ostrosky-Wegman P, Martinez G. Mutagenic activity of urban air samples and its modulation by chilli extracts. Mutat Res. 1993;303:55–61.

    Google Scholar 

  • Esplugues JV, Whittle BJR. Morphine potentiation of ethanol-induced gastric mucosal damage in the rat. Role of local sensory afferent neurons. Gastroenterology. 1990;98:82–9.

    PubMed  CAS  Google Scholar 

  • Esplugues JV, Whittle BJR, Moncanda S. Local opioid-sensitive afferent sensory neurons in the modulation of gastric damage induced by PAF. Br J Pharmacol. 1989;97:579–85.

    PubMed  CAS  Google Scholar 

  • Esplugues JV, Ramos EG, Gil L, Esplugues J. Influence of capsaicin-sensitive afferent neurons on the acid secretory responses of the rat stomach in vivo. Br J Pharmacol. 1990;100:491–6.

    PubMed  CAS  Google Scholar 

  • Esplugues JV, Whittle BJR, Moncanda S. Modulation by opioids and by afferent sensory neurons of prostanoids protection of the rat gastric mucosa. Br J Pharmacol. 1992;106:846–52.

    PubMed  CAS  Google Scholar 

  • Evangelista S, Meli A. Influence of capsaicin-sensory fibres on experimentally-induced colitis in rats. J Pharm Pharmacol. 1989;41:574–6.

    PubMed  CAS  Google Scholar 

  • Evangelista S, Santicioli P, Maggi CA, Meli A. Increase in gastric acid secretion induced by 2-deoxy-d-glucose is impaired in capsaicin pretreated rats. Br J Pharmacol. 1989;98:35–7.

    PubMed  CAS  Google Scholar 

  • Evans HJ. Chromosomal aberrations produced by ionizing radiation. Int Rev Cytol. 1962;13:221–31.

    CAS  Google Scholar 

  • Evans HJ. Cytological methods for detecting chemical mutagens. In: Hollander A, editor. Chemical mutagens, principles and methods for their detection, vol 4. New York: Plenum Press, 1976. p. 1–29.

  • Expert Consensus Document on the Use of Antiplatelet Agents. ESC Eur J 2004.

  • Fischer GA. Studies of the culture of leukemic cells in vitro. Ann N Y Acad Sci. 1958;76:673–80.

    PubMed  CAS  Google Scholar 

  • Flynn DL, Rafferty MF. Inhibition of human neutrophil 5-lipoxygenase activity by ginerdione, shogaol, capsaicin and related pungent compounds. Prostagland Leucotrien Med. 1986;24:195–8.

    CAS  Google Scholar 

  • Freudenberg K. Research on lignin. Fortschr Chem Org Naturst. 1962;20:41–72.

    PubMed  CAS  Google Scholar 

  • Galloway SM, Aardema MJ, Ischidate M, Ivett JL Jr, Kirkland DJ, Morita T, et al. Report from working group on in vitro tests for chromosomal aberrations. Mutat Res. 1994;312:241–61.

    PubMed  CAS  Google Scholar 

  • Gislason H, Guttu K, Sorbye H, Schifter S, Waldum LH, Svanes K. Role of histamine and calcitonin gene-related peptide in the hyperemic response to hypertonic saline and H+ back-diffusion in the gastric mucosa of cats. Scand J Gastroenterol. 1995;30:300–10.

    PubMed  CAS  Google Scholar 

  • Glinsukon T, Stitmunnaitnum Y, Toskulkao C, Buranawuth T, Tandkrisanavinont V. Acute toxicity of capsaicin in several animal species. Toxicon. 1980;18:215–20.

    PubMed  CAS  Google Scholar 

  • Goso C, Evangelista S, Tramontana N, Manzini S, Blumberg PM, Szallasi A. Topical capsaicin protects against trinitrobenzene sulfonic acid-induced colitis in the rat. Eur J Pharmacol. 1993;249:185–90.

    PubMed  CAS  Google Scholar 

  • Govindarajan VS, Sathyanarayana MN. Capsicum-production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism: structure pungency, pain, and desensitization sequences. Crit Rev Food Sci Nutr. 1991;29:435–74.

    Article  PubMed  CAS  Google Scholar 

  • Gray JL, Bunnet NW, Orloff SL, Mulvihill SJ, Debas HT. Role for calcitonin gene-related peptide in protection against gastric ulceration. Ann Surg. 1994;219:58–64.

    PubMed  CAS  Google Scholar 

  • Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol. 1991;4:168–79.

    PubMed  CAS  Google Scholar 

  • Gulbekian S, Merighi A, Wharton J, Varndell IM, Polak JM. Ultrastructural evidence for the coexistence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea-pig. J Neurocytol. 1986;15:535–42.

    Google Scholar 

  • Gunnett PM, Shi X, Lawson T, Kolar C, Toth B. Aryl radical formation during the metabolism of arylhydrazines by microsomes. Chem Res Toxicol. 1997;10:1372–7.

    Google Scholar 

  • Haim N, Nemec J, Roman J, Sinha BK. In vitro metabolism of etoposide (VP-16-213) by liver microsomes and irreversible binding of reactive intermediates to microsomal proteins. Biochem Pharmacol. 1987a;36:527–36.

    PubMed  CAS  Google Scholar 

  • Haim N, Nemec J, Roman J, Sinha BK. Peroxidase-catalyzed metabolism of etoposide (VP-15-213) and covalent binding of reactive intermediates to cellular macromolecules. Cancer Res. 1987b;47:5835–40.

    PubMed  CAS  Google Scholar 

  • Holzer P. Capsaicin-sensitive nerves in the control of vascular effector mechanisms. In: Green BG, Mason JR, Kare MR, editors. Chemical senses. Irritation, vol 2. New York: Marcel Dekker; 1990. p. 191–210. (TÉVES).

    Google Scholar 

  • Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev. 1991a;43:144–202.

    Google Scholar 

  • Holzer P. Afferent nerve-mediated control of gastric mucosal blood flow and protection. In: Costa M, Surrenti C, Gorini S, Maggi CA, Meli A, editors. Sensory nerve and neuropeptides in gastroenterology. From basic science to clinical perspective. New York: Plenum Press; 1991b. p. 97–108.

    Google Scholar 

  • Holzer P. Capsaicin: selective toxicity for thin primary sensory neurons. Selective neurotoxicity. In: Herken H, Hucho F, editors. Handbook of experimental pharmacology. Berlin: Springer; 1992a. p. 419–81.

    Google Scholar 

  • Holzer P. Peptidergic sensory neurons in the control of vascular functions: mechanisms and significance in the cutaneous and splanchnic vascular beds. Rev Physiol Biochem Pharmacol. 1992b;121:50–146.

    Google Scholar 

  • Holzer P. Neural emergency system in the stomach. Gastroenterology. 1998;114:823–39.

    PubMed  CAS  Google Scholar 

  • Holzer P. Capsaicin cellular targets, mechanisms of action, as selectivity for thin sensory neurons. Pharmacol Rev. 1999;43:143–201.

    Google Scholar 

  • Holzer P, Sametz W. Gastric mucosal protection against ulcerogenic factors in the rat mediated by capsaicin-sensitive afferent neurons. Gastroenterology. 1986;91:975–81.

    PubMed  CAS  Google Scholar 

  • Holzer P, Lippe IT. Stimulation of afferent nerve endings by intragastric capsaicin protects against ethanol-induced damage of gastric mucosa. Neuroscience. 1988;27:981–7.

    PubMed  CAS  Google Scholar 

  • Holzer P, Pabst MA, Lippe IT. Intragastric capsaicin protects against aspirin-induced lesion formation and bleeding in the rat gastric mucosa. Gastroenterology. 1989;96:1425–33.

    PubMed  CAS  Google Scholar 

  • Iwama M, Tojima T, Iitol Y, Takahashi N, Kanke Y. Effects of capsaicin and ethanol on hepatic drug-metabolizing enzymes in rat. Int J Vit Nutr Res. 1990;60:100–3.

    CAS  Google Scholar 

  • Jaiarj P, Kitphati C, Sinchaipanid N, Lertsin N, Siripanyachan P. Stability testing of capsaicinoid cream, Mahidol University Annual Research Abstracts 2000;371.

  • Jancsó N, Jancsó-Gábor A. Dauerausschaltung der Chemischen Schmerzempfindlichkeit durch capsaicin. Naunyn-Schmiedebergs Arch Exp Path Pharamc. 1959;236:142–5.

    Google Scholar 

  • Jancsó N, Jancsó-Gábor A, Szolcsányi J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol. 1967;31:138–51.

    Google Scholar 

  • Jancsó N, Jancsó-Gábor A, Szolcsányi J. The role of sensory nerves endings in the neurogen inflammation induced in human skin and in the eye and paw of the rat. Br J Pharmacol. 1968;33:32–41.

    Google Scholar 

  • Jancsó-Gábor A, Szolcsányi J, Jancsó N. Irreversible impairment of the irregulation induced by capsaicin and similar pungent substances in rat and guinea-pigs. J Physiol (London). 1970;206:495–507.

    Google Scholar 

  • Joe B, Lokesh BR. Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta. 1994;1224:255–63.

    PubMed  CAS  Google Scholar 

  • Karádi O, Mózsik Gy. Surgical and chemical vagotomy on the gastrointestinal mucosal defense. Budapest: Akadémiai Kiadó; 2000.

    Google Scholar 

  • Kawada T, Iwai K. In vivo and in vitro metabolism of dihydrocapsaicin, a pungent principle of hot pepper, in rat. Agric Biol Chem. 1985;49:441–8.

    CAS  Google Scholar 

  • Kawada T, Suzuki T, Takahashi M, Iwai K. Gastrointestinal absorption and metabolism of capsaicin and dihydrocapsaicin in rats. Toxicol Appl Pharmacol. 1984;72:449–56.

    PubMed  CAS  Google Scholar 

  • Kawai S, Nishida S, Kato M, Furumaya Y, Okomoto T, Mizushima Y. Comparison of cyclooxigenase-1 and-2 inhibitory activities of nonsteroidal anti-inflammatory drugs using humaín platelets and synovial cells. Eur J Pharmacol. 1998;347:87–94.

    PubMed  CAS  Google Scholar 

  • Kensler TW, Egner PA, Davidson NE, Roebuck BD, Pikul A, Groopman JD. Modulation of aflatoxin metabolism, aflatoxin-N7-guanine formation, and hepatic tumorigenesis in rats fed ethoxyquin: role of induction of glutathione S-transferases. Cancer Res. 1986;46:3924–31.

    PubMed  CAS  Google Scholar 

  • Ketusinh O, Dhorranintra B, Juengjareon K. Influence of capsaicin solution on gastric acidities. Am J Protocol. 1966;17:511–5.

    CAS  Google Scholar 

  • Koop DR. Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J. 1992;6:724–30.

    PubMed  CAS  Google Scholar 

  • Kopec SE, DeBellis RJ, Irwin RS. Chemical analysis of freshly prepared and stored capsaicin solutions: implications for tussigenic challenges. Pulm Pharmacol Ther. 2002;15:529–34.

    PubMed  CAS  Google Scholar 

  • Lawson T, Gannett P. The mutagenicity of capsaicin and dihydrocapsaicin in V79 cells. Cancer Lett. 1989;49:109–13.

    Google Scholar 

  • Lee SS, Kumar S. Microsomes, drug oxidations, and chemical calcinogenesis, vol 2. In: Coon MJ, Conney AH, Estabrook RW, Gelboin HV, Gillette JR, O’ Brien PJ, editors. New York: Academic Press. 1980. p. 1009–1012.

  • Lee HY, Dawson MI, Claret FX, Holzer S. Evidence of retinoid signaling alteration involving the activator protein I in tumorigenic human bronchial epithelial cells and small cell. Cell Growth Differ. 1997;8:283–91.

    PubMed  CAS  Google Scholar 

  • Lee KR, Suyuki T, Kobashi M, Hasegawa K, Iwai K. Quantitative microanalysis of capsaicin, dihydrocapsaicin, nordihydrocapsaicin using mass fragmentography. J Cromatogr. 1976;123:119–28.

    CAS  Google Scholar 

  • Lenzer J. FDA is incapable of protecting of US “against another vioxx”. Br Med J. 2004;329:1253.

    Google Scholar 

  • Li DS, Raybould HE, Quintero E, Guth PH. Calcitonin gene-related peptide mediates the gastric hyperemic response to acid back-diffusion. Gastroenterology. 1992;102:1124–8.

    PubMed  CAS  Google Scholar 

  • Lippe IT, Holzer P. Participation of endothelium-derived nitric oxide but not prostacyclin in the gastric mucosal hypeaemic response due to acid back-diffusion. Br J Pharmacol. 1992;105:708–14.

    PubMed  CAS  Google Scholar 

  • Lippe IT, Pabst MA, Holzer P. Intragastric capsaicin enhances rat gastric acid elimination and mucosal blood flow by afferent nerve stimulation. Br J Pharmacol. 1989;96:91–100.

    PubMed  CAS  Google Scholar 

  • Lopez-Carrillo L, Lopez-Cervantes M, Bobles-Diaz G, Ramilez-Espitia A, Mohar-Betancourt A, Menses-Gratia A, et al. Capsaicin consumption Helicobacter pylori positivity and gastric cancer in Mexico. Int J Cancer. 2003;106:277–82.

    PubMed  CAS  Google Scholar 

  • Maga JA. Capsicum. Crit Rev Food Sci Nutr. 1975;177–199.

  • Maggi CA. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol. 1995;45:1–98.

    PubMed  CAS  Google Scholar 

  • Maggi CA, Meli A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol. 1988;19:1–43.

    PubMed  CAS  Google Scholar 

  • Maggi CA, Santicioli P, Geppetti P, Parlani M, Astolfi M, DelBianco E, et al. The effect of calcium free medium and nefidipine on the release of substance P-like immunoreactivity and contractions induced by capsaicin in the isolated guinea-pig bladder. Gen Pharmacol. 1989;40:445–56.

    Google Scholar 

  • Makara GB, Frenkl CR, Somfai Z, Szepesházi K. Effect of capsaicin on the experimental ulcer in the rat. Acta Med Sci Hung. 1965;21:213–6.

    CAS  Google Scholar 

  • Mans DR, Lafleur MV, Westmijze EJ, van Maanen JM, van Schaik MA, Lankelma J, et al. Formation of different reaction products with single-and double-stranded DNA by the ortho-quinone and the semi-quinone free radical of etoposide (VP-16–213). Biochem Pharmacol. 1991;42:2131–9.

    PubMed  CAS  Google Scholar 

  • Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983;113:173–215.

    PubMed  CAS  Google Scholar 

  • Marques S, Oliveira NG, Chaveca T, Rueff J. Micronuclei and sister chromatid exchanges induced by capsaicin in human lymphocytes. Mutat Res. 2002;517:39–46.

    PubMed  CAS  Google Scholar 

  • Martin RL, McDermott SJ, Salmen HJ, Palmatier J, Cox BF, Gintant GA. The utility of hERG and repolarization assays in evaluating delayed cardiac repolarization: influence of multi-channel block. J Cardiovasc Pharmacol. 2004;43:369–79.

    PubMed  CAS  Google Scholar 

  • McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase. A system review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2 JAMA 2006;296 (http://www.jama.com, on 15 September 2006).

  • Merighi A, Polak JM, Gibson SJ, Gulbekian S, Valentino KL, Peirone SM. Ultrastructural studies on calcitonin gene-related peptide-, tachykinin- and somatostatin-immunoreactive neurons in rat dorsal root ganglia: evidence for colocalization of different peptides in single secretory granules. Cell Tiss Res. 1988;254:101–9.

    CAS  Google Scholar 

  • Miller MS, Brendel K, Burks TF, Sipes IG. Interaction of capsaicinoids with drug-metabolizing systems. Relationship to toxicity. Biochem Pharmacol. 1983;32:547–51.

    PubMed  CAS  Google Scholar 

  • Modly CE, Das M, Don PS, Marcelo CL, Mukhtar H, Bickers DR. Capsaicin as an in vitro inhibitor of benzo(a)pyrene metabolism and its DNA binding in human and murine keratinocytes. Drug Metab Dispos. 1986;14:413–6.

    PubMed  CAS  Google Scholar 

  • Molnar J. Die pharmakologischen wirkungen des capsaicin, des schaf schmeckenden wirkstoffers im paprika. Arzeilmittel-Forsh. 1965;L5:718.

    Google Scholar 

  • Molnar J, György L. Pulmonary hypertensive and other haemodynamic effect of capsaicin in the cat. Eur J Pharmacol. 1967;1:86–92.

    PubMed  CAS  Google Scholar 

  • Monsereenusorn Y. Subchronic toxicity studies of capsaicin and capsinum in rats. Res Commmun Chem Path Pharmacol. 2001;41:95–110.

    Google Scholar 

  • Moore MM, Honna M, Clements J, Bolcsfoldi G, Cifone M, Delondchamp R, et al. Mouse thymidine kinase gene mutation assay: International workshop on genotoxicity test. Workgroup Report.-Plymouth, UK 2002. Mutat Res. 2003;540:127–40.

    PubMed  CAS  Google Scholar 

  • Mózsik Gy, Moron F, Jávor T. Cellular mechanisms of the development of gastric mucosal damage and of gastroprotection induced by prostacyclin in rats. A pharmacological study. Prostagland. Leukot. Med. 1982;9:71–84.

    Google Scholar 

  • Mózsik Gy, Király Á, Sütö G, Vincze Á. ATP breakdown and resynthesis in the development of gastrointestinal mucosal damage and its prevention in animals and human (an overview of 25 years ulcer research studies). In: Mózsik Gy, Pár A, Kitajima M, Kondo M, Pfeiffer CJ, Rainsford KD, Sikiric P, Szabó S, editors. Cell injury and protection in the gastrointestinal tract: from basic science to clinical perspectives. Budapest: Akadémiai Kiadó; 1993. p. 39–80.

    Google Scholar 

  • Mózsik Gy, Abdel-Salam OME, Bódis B, Karádi O, Nagy L, Szolcsányi J. Role of vagal nerve in defense mechanisms against NSAIDs-induced gastrointestinal mucosal damage. Inflammopharmacology. 1996a;4:151–72.

    Google Scholar 

  • Mózsik Gy, Abdel-Salam OME, Bódis B, Karádi O, Király Á, Sütö G, et al. Gastric mucosal protective effects of prostacyclin and β-carotene, and their biochemical backgrounds in rats treated with ethanol and HCl in dependence of their doses and of their time after administration of necritizing agents. Inflammopharmacology. 1996b;4:361–78.

    Google Scholar 

  • Mózsik Gy, Nagy L, Király Á, editors. Twenty-five years of peptic ulcer research in Hungary. from basic science to clinical practice 1971–1995. Budapest: Akadémiai Kiadó; 1997a. p. 1–448.

    Google Scholar 

  • Mózsik Gy, Nagy L, Pár A, Rainsford KD, editors. Cell injury and protection in the gastrointestinal tract: from basic science to clinical perspectives. Dordrecht: Kluwer Academic Publisher; 1997b.

    Google Scholar 

  • Mózsik Gy, Abdel-Salam OME, Szolcsányi J. Capsaicin-sensitive afferent nerves in gastric mucosal damage and protection. Budapest: Akadémiai Kiadó; 1997c.

    Google Scholar 

  • Mózsik Gy, Debreceni A, Abdel-Salam OME, Szabó I, Figler M, Ludámy A, et al. Small doses capsaicin given intragastrically inhibit gastric secretion in healthy human subjects. J Physiol Paris. 1999;93:433–6.

    PubMed  Google Scholar 

  • Mózsik Gy, Vincze Á, Szolcsányi J. Four responses of capsaicin sensitive primary afferent neurons to capsaicin and its analog. Gastric acid secretion, gastric mucosal damage and protection. J Gastroenterol Hepatol. 2001;16:193–7.

    Google Scholar 

  • Mózsik Gy, Belágyi J, Szolcsányi J. Capsaicin-sensitive afferent nerves and gastric mucosal protection in the human healthy subjects. A critical overview. In: Takeuchi K, Mózsik Gy, editors. India: Research Signpost Kerala. 2004a. p. 43–62.

  • Mózsik Gy, Pár A, Pár G, et al. Insight into the molecular pharmacology to drugs acting on the afferent and efferent fibres of vagal nerve in the gastric mucosal protection. In: Sikirič P, Seiwerth P, Mózsik Gy., Arakawa T, Takeuchi K, editors. Proceedings of the 11th International Conference. Monduzzi: Ulcer Research. 2004b. p. 163–168.

  • Mózsik Gy, Rácz I, Szolcsányi J. Gastroprotection induced by capsaicin in healthy human subjects. World J Gastroenterol. 2005;11:5180–4.

    PubMed  Google Scholar 

  • Mózsik Gy, Dömötör A, Abdel-Salam OME. Molecular pharmacological approach to drug actions on the afferent and efferent fibres of the vagal nerve in the gastric mucosal protection in rats. Inflammopharmacology. 2006;14:243–9.

    PubMed  Google Scholar 

  • Mózsik Gy, Szolcsányi J, Dömötör A. Capsaicin research as a new tool to approach of the human gastrointestinal physiology, pathology and pharmacology. Inflammopharmacology. 2007;15:232–45.

    PubMed  Google Scholar 

  • Mózsik Gy, Dömötör A, Past T, Vas V, Perjési P, Kuzma M, et al. Capsaicinoids: from the plant cultivation to the production of the human medical drug. Budapest: Akadémiai Kiadó; 2009.

    Google Scholar 

  • Nagabhuslan M, Blide SV. Mutagenicity of chili extract and capsaicin in short term tests. Environ Mutagen. 1985;7:881–8.

    Google Scholar 

  • Newmark HL. A hypothesis for dietary components as blocking agents of chemical carcinogenesis: plant phenolics and pyrole pigments. Nutr Cancer. 1984;6:58–70.

    PubMed  CAS  Google Scholar 

  • Newmark HL. Plant phenolics as inhibitors of mutational and precarcinogenic events. Can J Physiol Pharmacol. 1987;65:461–6.

    PubMed  CAS  Google Scholar 

  • Nopanitaya W. Effects of capsaicin in combination with diets of varying protein content on the duodenal absorptive cells of the rat. Am J Dig Dis. 1974;19:439–49.

    PubMed  CAS  Google Scholar 

  • Notani PN, Jayant K. Role of diet in upper aerodigestive tract cancers. Nutr Cancer. 1987;10:103–13.

    Article  PubMed  CAS  Google Scholar 

  • Oi Y, Kawada T, Watanabe T, Iwai K. Induction of capsaicin- hydrolyzing enzyme activity in rat liver by continuous oral administration of capsaicin. J Agric Food Chem. 1992;40:467–70.

    CAS  Google Scholar 

  • Onodera S, Shibata M, Tanaka, et al. Gastroprotective mechanisms of lafutidine, a novel anti-ulcer drug with histamine H2-receptor antagonist activity, Artneim Forsch. Drug Res. 1999;49:519–26.

    CAS  Google Scholar 

  • Onodera S, Shibata M, Tanaka, et al. Gastroprotective activity of FRG-8813, a novel histamine H2-receptor antagonist, in rats. Jpn J Pharmacol. 2002;68:161–73.

    Google Scholar 

  • Pabst MA, Schöninkle E, Holzer P. Ablation of capsaicin-sensitive afferent neurons impairs defense but not rapid repair of rat gastric mucosa. Gut. 1993;34:897–903.

    PubMed  CAS  Google Scholar 

  • Pan HL, Chen SR. Sensing tissue ischemia: another function for capsaicin receptors? Circulation 2004;60:1826–1831.

    Google Scholar 

  • Park YH, Lee SS. Identification and characterization of capsaicin-hydrolyzing enzymes purified from rat liver microsomes. Biochem Mol International. 1994;34:351–60.

    CAS  Google Scholar 

  • Pique JM, Esplugues JV, Whittle BJR. Influence of morphine or capsaicin pretreatment on rat gastric microcirculatory response to PAF. Am J Physiol. 1990;258:G352–7.

    PubMed  CAS  Google Scholar 

  • Rauf M, Bachmann E, Metwally SA. J Drug Res Egypt. 1985;16:29–36.

    Google Scholar 

  • Raybould HE, Taché Y. Capsaicin-sensitive vagal afferent fibres and stimulation of gastric acid secretion in anesthetized rats. Eur J Pharmacol. 1989;167:237–43.

    PubMed  CAS  Google Scholar 

  • Reinshage M, Pate A, Sottili M, Nast C, Davis W, Muellr K, et al. Protective functions of extrinsic sensory neurons in acute rabbit experimental colitis. Gastroenterology. 1994;106:1208–14.

    Google Scholar 

  • Richeux F, Cascante M, Ennamary, Sabourcau D, Creppy EE. Cytotoxicity and genotoxicity of capsaicin in human neuroblastoma cellsSHSY-5Y. Arch Toxicol. 1999;73:403–9.

    PubMed  CAS  Google Scholar 

  • Ritchie WP Jr. Mediators of bile acid induced alterations in gastric mucosal blood flow. Am J Surg. 1991;161:126–9.

    PubMed  CAS  Google Scholar 

  • Robert A, Olafsson AS, Lancaster C, Zhang W. Effects of capsaicin and of capsaicin denervation on gastric secretion and gastric lesions produced by ulcerogenic agents. Exp Clin Gastroenterol. 1991;1:5. Abst.

    Google Scholar 

  • Rozin P. Getting to like the burn of chili pepper. Biological, physiological, and cultural perspective. In: Green BG, Manson JR, Kare MR, editors. Chemical senses. Irritation, vol. 2. New York: Marcel Dekker; 1990. p. 231–69.

    Google Scholar 

  • Saito A, Yamamoto M. Acute oral toxicity of capsaicin in mice and rats. J Toxicol Sci. 1996;21:195–200.

    PubMed  CAS  Google Scholar 

  • Sarlós P, Rumi Gy, Szolcsányi J, Mózsik Gy, Vincze Á. Capsaicin prevents the indomethacin-induced gastric mucosal damage n human healthy subject. Gastroenterology. 2003;124(Suppl. 1):A-511.

    Google Scholar 

  • Savitha G, Panchanathan S, Salimath BP. Capsaicin inhibits calmodulin-mediated oxidative burst in rat macrophages. Cell Signal. 1990;2:577–85.

    PubMed  CAS  Google Scholar 

  • Schneider MA, de Luca V, Gray SJ. The effect of spice ingestion upon the stomach. Am J Gastroenterlol. 1956;26:722–32.

    CAS  Google Scholar 

  • Schweiggert U, Schieber A, Carle R. Effects of blanching and storage on capsaicinoid stability and peroxidase activity of hot chili peppers. Innovative Food Science and Emerging Technologies. 2006, September

  • Solanke TF. The effect of red pepper (Capsicum frutescens) on gastric acid secretion. J Surg Res. 1973;15:385–90.

    PubMed  CAS  Google Scholar 

  • Starlinger M, Schiessel R, Hung CR. H+ back-diffusion stimulating mucosal blood flow in the rabbit fundus. Surgery. 1981;89:232–6.

    PubMed  CAS  Google Scholar 

  • Surh YJ, Lee SS. Capsaicin a double-edged swort: toxicity, metabolism, and chemopreventive potential. Life Sci. 1995;56:1845–55.

    PubMed  CAS  Google Scholar 

  • Surh YJ, Ahn SH, Kim KC, Park JB, Sohn YW, Lee SS. Metabolism of capsaicinoids: evidence for aliphatic hydroxylation and its pharmacological implications. Life Sci. 1995;56:PL305–11.

    PubMed  CAS  Google Scholar 

  • Szállasi A, Blumberg M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51:159–211.

    PubMed  Google Scholar 

  • Szolcsányi J. A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiology (Paris). 1977;73:251–9.

    Google Scholar 

  • Szolcsányi J. Capsaicin type pungent agents producing pyrexia. In: Milton AS, editor. Handbook of experimental pharmacology, vol 60. Pyretics and Antipyretics. Berlin: Springer; 1982. p. 437–78.

    Google Scholar 

  • Szolcsányi J. Capsaicin-sensitive chemoceptive neural system with dual sensory-efferent function. In: Chahl LA, Szolcsányi J, Lembech F, editors. Antidromic vasodilatation and neurogenic inflammation. Budapest: Akadémiai Kiadó; 1984. p. 27–56.

    Google Scholar 

  • Szolcsányi J. Sensory receptors and the antinociceptive effect of capsaicin. In: Hakanson R, Sundler F, editors. Tachykinin antagonists. Amsterdam: Elsevier; 1985. p. 45–54.

    Google Scholar 

  • Szolcsányi J. Capsaicin, irritation, and desensitization: neurophysiological and future perspectives. In: Green BG, Mason JR, Kare MR, editors. Chemical senses. Irritation, vol 2. New York: Marcel Dekker. 1990a. p. 141–169.

  • Szolcsányi J. Effect of capsaicin, rediniferatoxin and piperine on ethanol-induced gastric ulcer of the rat. Acta Physiol Hung. 1990b;75:267–8.

    PubMed  Google Scholar 

  • Szolcsányi J. Actions of capsaicin on sensory receptors. In: Wood JN, editor. Capsaicin in the study of pain. London: Academic Press; 1993. p. 1–33.

    Google Scholar 

  • Szolcsányi J. Capsaicin-sensitive sensory nerve terminals with local and systemic efferent functions: facts and scopes of unorthodox neuroregulatory mechanisms. In: Kumazawa T, Kumazawa L, Mizumura K, editors. The polymodal receptor—a gateway to pathological pain. Progress in brain research, vol 113. Amsterdam: Elsevier; 1996. p. 343–59.

    Google Scholar 

  • Szolcsányi J. A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiol Paris. 1997;73:251–9.

    Google Scholar 

  • Szolcsányi J. Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptide. 2004;38:377–84.

    Google Scholar 

  • Szolcsányi J, Barthó L. Impaired defense mechanisms to peptic ulcer in the capsaicin-desensitized rat. In: Mózsik Gy, Hänninen O, Jávor T, editors. Advances in physiological sciences, vol 29. Gastrointestinal defense mechanisms. Oxford and Budapest: Pergamon Press and Akadémiai Kiadó; 1981. p. 39–51.

    Google Scholar 

  • Szolcsányi J, Pórszász R, Pethő G. Capsaicin and pharmacology of nociceptors. In: Besson JM, Besson G, Ollat H, editors. Peripheral neurons in nociception. Physicopharmacological aspects. Paris: John Libby Eurotext. 1994. p. 109–124.

  • Takeuchi K, Ohuchi T, Okabe S. Capsaicin-sensitive sensory neurons in healing of gastric lesions induced by HCl in rats. Dig Dis Sci. 1994;39:2543–6.

    PubMed  CAS  Google Scholar 

  • Takeuchi K. Unique profile of lafutidine: a novel histamine H2-receptor antagonist: mucosal protection throughout GI mucosal mediated by capsaicin-sensitive afferent nerves. Acta Pharmacol Sinica Suppl. 2006;27–35.

  • Taurog A, Dorris M, Doerge DR. Evidence for a radical mechanism in peroxidase-catalyzed coupling. I. Steady-state experiments with various peroxidases. Arch Biochem Biophys. 1994;315:82–7.

    PubMed  CAS  Google Scholar 

  • Todd PA, Clissold SP. Naproxen. A reappraisal of its pharmacology, and therapeutic use in rheumatic disease and pain states. Drugs. 1990;40:91–137.

    PubMed  CAS  Google Scholar 

  • Tominata M, Caterina MJ, Malmberg AB, Rosen TA, Gilbet H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21:531–43.

    Google Scholar 

  • Tramontana M, Renzi D, Calabro A, Panerai C, Milani S, Surrenti C, et al. Influence of capsaicin-sensitive afferent fibres on acetic acid-induced chronic gastric ulcers in rats. Scand J Gastroenterol. 1994;29:406–13.

    PubMed  CAS  Google Scholar 

  • Vaishnava P, Wang DH. Capsaicin sensitive-sensory nerves and blood pressure regulation. Curr Med Chem Cardiovasc Hematol Agents. 2003;1:177–88.

    PubMed  CAS  Google Scholar 

  • Varga L. Action of various stimulants on gastric chemistry (in Hungarian). Orv Hetil Hung Med Weekly. 1936;80:702–4.

    CAS  Google Scholar 

  • Viranuvatti V, Kalayasiri C, Chearani O. Effect of capsicum solution on human gastric mucosa as observed gastroscopically. Am J Gastroenterol. 1972;58:225–32.

    PubMed  CAS  Google Scholar 

  • Walpole CS, Wrigglesworth R, Bevan S, Campbell EA, Dray A, James IF, et al. Analogs of capsaicin with agonist activity as novel analgesic agents; structure-activity studies 1. The aromatic “A-region”. J Med Chem. 1993a;36:2362–72.

    PubMed  CAS  Google Scholar 

  • Walpole CS, Wrigglesworth R, Bevan S, Campbell EA, Dray A, James IF, et al. Analogs of capsaicin with agonist activity as novel analgesic agents; structure-activity studies 2. The amide bond “B-region”. J Med Chem. 1993b;36:2373–80.

    PubMed  CAS  Google Scholar 

  • Walpole CS, Wrigglesworth R, Bevan S, Campbell EA, Dray A, James IF, et al. Analogs of capsaicin with agonist activity as novel analgesic agents; structure-activity studies 3. The hydrophobic side chain “C-region”. J Med Chem. 1993c;36:2381–9.

    PubMed  CAS  Google Scholar 

  • Wehmeyer Y, Kasting GB, Powell JH, Kuhlenbeck DL, Underwood RA, Bowman LA. Applications of liquid chromatography with on-line radiochemical detection to metabolism studies on a novel class of analgesic. J Pharm Biomed Anal. 1990;8:177–83.

    PubMed  CAS  Google Scholar 

  • Whittle BJR. Mechanisms underlying gastric mucosal damage induced by indomethacin and bile salts, and the action of prostaglandins. Br J Pharmacol. 1977;60:455–60.

    PubMed  CAS  Google Scholar 

  • Whittle BJR, Lopez-Belmonte J. Interactions between the vascular peptide endothelin-1 and sensory neuropeptides on gastric mucosal injury. Br J Pharmacol. 1991;102:950–4.

    PubMed  CAS  Google Scholar 

  • Winter J. Characterization of capsaicin sensitive neurons in adult rat dorsal root ganglion culture. Neurosci Lett. 1987;80:134–40.

    PubMed  CAS  Google Scholar 

  • Wood JN, Winter J, James IF, Rang HPh, Yeats J, Bevan S. Capsaicin induced ion fluxes in dorsal root ganglion neurons in culture. J Neurosci. 1988;8:3208–20.

    PubMed  CAS  Google Scholar 

  • Yagi T. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch Biochem Biophys. 1990;281:305–11.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the grant from National Office for Research and Technology, “Pázmány Péter program” (RET-II 08/2005).

The authors express deeply their sincerely thanks to Ms. Victoria Vas and Mrs. Judit Szabo for their excellent helps in the preparation of this overview.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Mózsik.

Additional information

This paper is dedicated to professor K. D. Rainsford on the occasion of his Festschrift (see Inflammopharmacol, 2008; 16:286–324), remembering our common research interests and book publications in the last four decades.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mózsik, G., Past, T., Abdel Salam, O.M.E. et al. Interdisciplinary review for correlation between the plant origin capsaicinoids, non-steroidal antiinflammatory drugs, gastrointestinal mucosal damage and prevention in animals and human beings. Inflammopharmacol 17, 113–150 (2009). https://doi.org/10.1007/s10787-009-0002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-009-0002-3

Keywords

Navigation