Advertisement

Journal of Indian Philosophy

, Volume 35, Issue 5–6, pp 487–520 | Cite as

Positional Value and Linguistic Recursion

  • John Kadvany
Article

Keywords

Natural Language Turing Machine Number Word Rule Application Positional Notation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison Jean (2001). Language change: Progress or decay? (3rd ed.). New York, Cambridge University PressGoogle Scholar
  2. Bag A.K. (1975). al-Biruni on Indian Arithmetic. Indian Journal for the History of Science 10: 174–184Google Scholar
  3. Barber Charles (2000). The English language revised edition. New York, Cambridge University PressGoogle Scholar
  4. Baron-Cohen Simon (1997). Mindblindness: An essay on autism and theory of mind. New York, Cambridge University PressGoogle Scholar
  5. Boolos George (1979). The unprovability of consistency. New York, Cambridge University PressGoogle Scholar
  6. Brinton Laurel, Traugott Elizabeth (2005). Lexicalization and language change. New York, Cambridge University PressGoogle Scholar
  7. Brough John (1951). Theories of general linguistics in the Sanskrit grammarians. In Staal 1972: 402–413Google Scholar
  8. Chomsky, Noam (1963). Formal properties of grammars. In Luce et al. 323–418.Google Scholar
  9. Chomsky Noam (1980). Rules and representations. New York, Columbia University PressGoogle Scholar
  10. Chomsky, Noam, & Miller, George (1963). Introduction to the formal analysis of natural languages. In Luce et al. 269–322.Google Scholar
  11. Clark Herbert (1996). Using language. New York, Cambridge University PressGoogle Scholar
  12. Datta, Bibhutibhushan, & Singh, Avadesh Narayan (1935). History of Hindu mathematics I, II. Delhi: Bharatiya Kala Prakashan. (Reprinted (2001)).Google Scholar
  13. Davis Martin Davis (Ed.) (1965). The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions. Hewlett, New York, Raven PressGoogle Scholar
  14. Davis, Martin Davis, Sigal, Ron, & Weyuker, Elaine (1994). Computability, complexity, and langauges: Fundamentals of theoretical computer science (2nd ed.), New York: Academic Press.Google Scholar
  15. Deutscher Guy (2005). The unfolding of language. New York, Metropolitan BooksGoogle Scholar
  16. Emch, Gerard, Sridharan, R., & Srinivas, M. D. (Eds.) (2005). Contributions to the history of Indian mathematics. New Delhi: Hindustan Book Agency.Google Scholar
  17. Enderton Herbert (1972). A mathematical introduction to logic. New York, Academic PressGoogle Scholar
  18. Fischer, Michael, & Rabin, Michael (1974). Super-exponential complexity of Presburger arithmetic. SIAM-AMS Proceedings, No. 7, American Mathematics Society, Providence, R.I., 27–41.Google Scholar
  19. Gandy, Robin (1995). The confluence of ideas in 1936. In Rolf Herken (Ed.), The universal turing machine: A half-century survey (2nd ed.). New York: Springer-Verlag.Google Scholar
  20. Gardner Howard (1987). The mind’s new science: A history of the cognitive revolution. New York, Basic BooksGoogle Scholar
  21. Gentner Dedre, Goldin-Meadow Susan (eds). (2003). Language in mind: Advances in the study of langauge and thought. Cambridge, MIT PressGoogle Scholar
  22. Goody Jack (1987). The interface between the written and the oral. New York, Cambridge University PressGoogle Scholar
  23. Ifrah, Georges (2000). The universal history of numbers: From prehistory to the invention of the computer. (David Bellos et al. trans.). New York: John Wiley & Sons.Google Scholar
  24. Karmiloff-Smith Annette (1992). Beyond modularity: A developmental approach to cognitive science. Cambridge, MIT PressGoogle Scholar
  25. Keller, Agathe (2006). Expounding the mathematical seed: A translation of Bhāskara I on the mathematical chapter of the Āryabhatīya I, II. Boston: Birkhäuser.Google Scholar
  26. Klein, Jacob (1936). Greek mathematical thought and the origin of algebra. (Eva Brann trans. 1968). New York: Dover (Reprint (1992)).Google Scholar
  27. Luce R. Duncan, Bush R., Galanter E. (eds). (1963). Handbook of mathematical psychology (Vol. II). New York, John Wiley & SonsGoogle Scholar
  28. Minsky Marvin (1967). Computation: Finite and infinite machines. New York, Prentice-HallGoogle Scholar
  29. Nayar B.K. (1975) al-Biruni and science communication in Sanskrit. Indian Journal for the History of Science 10, 249–252Google Scholar
  30. Pullum Geoffrey, Scholz Barbara (2005). Contrasting applications of logic in natural language syntactic description. In Petr Hájek, et al. (eds). Logic, methodology and philosophy of science: Proceedings of the twelfth international congress. London, King’s College Publications, pp. 481–503Google Scholar
  31. Renou Louis (1941). Les connexions entre le rituel et la grammaire en Sanskrit. In Staal 1972: 435–469Google Scholar
  32. de Saussure, Ferdinand (1915/1959). Course in general linguistics. (Wade Baskin trans. C. Bally et al. (Eds.)). New York: McGraw-Hill.Google Scholar
  33. Sharma, Rama Nath (1987). The Aṣṭādhyāyī of Pāṇini I: Introduction to the Aṣṭādhyāyī as a grammatical device. New Delhi: Munshiram Manoharlal.Google Scholar
  34. Staal Frits (Ed.) (1972). Reader on the Sanskrit grammarians. Cambridge, MIT PressGoogle Scholar
  35. Staal, Frits (1983). Agni: The Vedic fire ritual I, II. Delhi: Motilal Banarsidass (Reprint (2001)).Google Scholar
  36. Staal Frits (1988). Universals: Studies in Indian logic and linguistics. Chicago, University of Chicago PressGoogle Scholar
  37. Staal Frits (1990). Ritual and mantras: Rules without meaning. Delhi, Motilal BanarsidassGoogle Scholar
  38. Staal Frits (2006). Artificial languages across sciences and civilizations. Journal of Indian Philosophy 34, 87–139CrossRefGoogle Scholar
  39. Tomasello Michael (1999). The social origins of human cognition. Cambridge, Harvard University PressGoogle Scholar
  40. Tomasello Michael (2003). Constructing a language: A usage-based theory of language acquistion. Cambridge, Harvard University PressGoogle Scholar
  41. Turing, Alan (1936). On computable numbers with an application to the Entscheidungsproblem. In Davis 115–153.Google Scholar
  42. Woepcke, Franz (1863). Mémoire sur la Propagation des Chiffres Indiens. Journal Asiatique, Sixth Series, 1, 442–529. In Fuat Sezgin (Ed.), Franz Woepcke, Études sur les Mathématiques Arabo-Islamiques (Vol. 2). Frankfurt: Institute for the History of Arabic-Islamic Science and the Goethe University, 1986.Google Scholar
  43. Young, Paul (1985). Gödel theorems, exponential difficulty and undecidability of arithmetic theories: An exposition. In Anil Nerode, & Richard Shore (Eds.), Recursion theory: Proceedings of symposia in pure mathematics (Vol. 42). Providence: American Mathematical Society.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Principal, Policy & Decision ScienceMenlo ParkUSA

Personalised recommendations