Skip to main content
Log in

Make–Keep–Use: Bringing Historical Instruments into the Classroom

Interchange Aims and scope Submit manuscript


This paper describes a new approach towards the implementation of history of physics in physics education. Reconstructed historical instruments are given to secondary school students. These students are requested to analyze these devices with the aim of collecting sufficient information in order to build their own working version of this device. Whilst the initial instruments were built according to source information, the students can modify materials, dimensions etc. in order to come up with a device that is their individual representation of the initial device. In working on their own version of the instrument, the students shall be enabled to understand that instruments were built on purpose by skilled craftsmen. Thus, they are enabled to understand that science is not merely done by geniuses, but also skilled workers are crucial to scientific practices. Moreover, through this approach the institution has its own version of the instrument that can be used in future science teaching. In this paper, the approach and its conceptual background will be described; its realization and first experiences will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Even though Wagenschein is referred to frequently in the educational literature, very few of his papers were translated into English. Exceptions are Wagenschein (1961), Wagenschein (1977), see (last access May 9th, 2014), and Wagenschein (2000). For a discussion of his approach see e.g. Machold (1992), Østergaard et al. (2008). Apart from the mentioned works, his most influential publications are probably Wagenschein (1968) and Wagenschein (1971).

  2. Evidently, the students cannot make the lens themselves, either they can contact an optician to see whether she or he is able to make them an adequate lens, or to get a lens and adapt the instrument to this part.

  3. Apart from these instruments, a water prism and a crown of cups were options for the building activity, for the options of building the latter in an educational context see, last access Feb. 15th, 2013.

  4. The video can be seen at (last access, Feb. 15th, 2013). Due to copyright the students omitted the sound when publishing the video.

  5. For a more detailed discussion of the evaluation see Asmussen & Heering (2014), the evaluation of the students can be found in Schubert (2011), the one of the teachers in Asmussen (2011).

  6. In this item, the students used a grading corresponding to the one in the German school system. Here, 1 corresponds to outstanding, 2 to good, 3 to 4 to satisfactory, 5 to not completely satisfactory and 6 to unsatisfactory.

  7. To avoid misunderstandings: By machinery I refer to devices such an electrical drill, a fret saw, or an electrical screw driver. Simplified, it can be said that we used only machinery and tools that are common in a home improvement store.


  • Asmussen, S. (2011). GutachtenEvaluation des Galilei-Projekts. Flensburg: unpublished manuscript.

  • Asmussen, S., Heering, P. (2014). Ein neuartiger Zugang zur Implementierung historischer Geräte und Experimente im Unterricht. In PhyDid A 13(1),, last access May 7th, 2014.

  • Barth, M. (2012). Durchbrechen wir den Teufelskreis! Erfahrungen aus meinem Unterricht und Überlegungen zur Implementation von Naturwissenschaftsgeschichte in der Lehrerausbildung. In P. Heering, M. Markert, & H. Weber (Eds.), Experimentelle Wissenschaftsgeschichte didaktisch nutzbar machen: Ideen, Überlegungen und Fallstudien (pp. 227–240). Flensburg: Flensburg University Press.

    Google Scholar 

  • Brander, G. F., 1769. Kurze Beschreibung einer ganz neuen Art einer Camerae Obscurae ingleichen eines Sonnen Mikroskops welches man bequem aller Orten hinstellen und ohne Verfinsterung des Zimmers gebrauchen kann. Augsburg: Eberhard Kletts seel. Wittib.

  • Crary, J. (1990). Techniques of the observer: on vision and modernity in the nineteenth century. Cambridge: MIT Press.

    Google Scholar 

  • Fiesser, L. (2010). Miniphänomenta: 52 spannende Experimente für den Schulflur und das Klassenzimmer (3 Ed ed.). Hamburg: Nordmetall-Stiftung.

    Google Scholar 

  • Heering, P. (2000). Getting shocks: Teaching secondary school physics through history. Science & Education, 9, 363–373.

    Article  Google Scholar 

  • Heering, P., (2004). Rejected historical experiments and their use for science teacher training. In Don Metz (Ed.), Proceedings of the 7th IHPST Conference, Winnipeg, 2003, 366–376.

  • Heering, P., Klassen, S., & Metz, D. (Eds.). (2013). Enabling scientific understanding through historical instruments and experiments in formal and non-formal learning environments. Flensburg: Flensburg University Press.

    Google Scholar 

  • Heering, P., Rieß, F., & Sichau, C. (1995). Lernen im Labor der Physikgeschichte. Wechselwirkung, 17, 28–32.

    Google Scholar 

  • Höttecke, D., & Silva, C. (2011). Why implementing history and philosophy in school science education is a challenge: An analysis of obstacles. Science & Education, 20(3), 293–316. doi:10.1007/s11191-010-9285-4.

    Article  Google Scholar 

  • Lefèvre, W., (Ed.). (2007). Inside the camera obscura: optics and art under the spell of the projected image. Berlin: Max-Planck-Institut für Wissenschaftsgeschichte (MPI Preprint 333).

  • Machold, D. K. (1992). Is physics worth teaching? Science & Education, 1(3), 301–311.

    Article  Google Scholar 

  • Metz, D., and Stinner, A., (2006). A Role for Historical Experiments: Capturing the Spirit of the Itinerant Lecturers of the 18th Century. Science & Education, 1–12.

  • Müller, M. (2010). Die Camera obscura von Georg Friedrich Brander (1767). In O. Breidbach, P. Heering, M. Müller, & H. Weber (Eds.), Experimentelle Wissenschaftsgeschichte (pp. 125–154). München: Wilhelm Fink Verlag.

    Google Scholar 

  • Østergaard, E., Dahlin, B., & Hugo, A. (2008). Doing phenomenology in science education: A research review. Studies in Science Education, 44(2), 93–121.

    Article  Google Scholar 

  • Pukies, J. (1979). Das Verstehen der Naturwissenschaften. Braunschweig: Westermann.

    Google Scholar 

  • Rieß, F. (1995). Teaching science and the history of science by redoing historical experiments. In F. Finlay, D. Allchin, D. Rhees, & S. Fifield (Eds.), Proceedings of the third international history, philosophy, and science teaching conference (pp. 958–966). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Rieß, F. (2000). History of physics in science teacher training in Oldenburg. Science & Education, 9(4), 399–402.

    Article  Google Scholar 

  • Rieß, F., & Schulz, R. (1988). Zur Rechtfertigung des historisch-genetischen Ansatzes im naturwissenschaftlichen Unterricht. Zentrum für Pädag. Berufspraxis: Oldenburg.

    Google Scholar 

  • Sauer, F. (2005). Der Einfluss offener Experimentierstationen auf das naturwissenschaftlich-technische Lernen im Primarbereich. Tönning: Der andere Verlag.

    Google Scholar 

  • Schubert, S., (2011). Schülerperspektiven im „Projekt Galilei“: Wie Schüler der Sekundarstufe I über das selbstgesteuerte Lernen an historischen Experimentierstationen denken. Flensburg: unpublished M. Ed. Thesis.

  • Wagenschein, M. (1961). The teaching of mathematics — A tragedy. International Review of Education, 7(2), 155–164.

    Article  Google Scholar 

  • Wagenschein, M. (1968). Verstehen lehren: genetisch, sokratisch, exemplarisch. Weinheim: J. Beltz.

    Google Scholar 

  • Wagenschein, M. (1971). Die pädagogische Dimension der Physik. Braunschweig: G. Westermann.

    Google Scholar 

  • Wagenschein, M. (1977). Rettet die Phänomene! (Der Vorrang des Unmittelbaren). Der Mathematische und Naturwissenschaftliche Unterricht, 30, 129–137.

    Google Scholar 

  • Wagenschein, M. (2000). Teaching to understand: on the concept of the exemplary in teaching. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition. Studies in curriculum theory series (pp. 161–176). Mahwah: NJ: Lawrence Erlbaum.

    Google Scholar 

Download references


‘Projekt Galilei’ has been developed in collaboration with Friedhelm Sauer. Martin Engel participated in the realization of the pilot study; the website and its structure were developed by Martin Panusch. The pilot study had been funded by the NORDMETALL-Stiftung. Central aspects of this paper were presented at the IX International Conference for the History of Science in Science Education and were published in Heering et al. (2013). The author would like to express his gratitude to two anonymous referees whose comments helped to clarify the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter Heering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heering, P. Make–Keep–Use: Bringing Historical Instruments into the Classroom. Interchange 46, 5–18 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: