Skip to main content

Advertisement

Log in

One Line of Development of the Galerkin Projection Method in Problems of Stationary Solid Mechanics (Review)

  • Published:
International Applied Mechanics Aims and scope

One of the line of development of the projective Galerkin method intended for efficient solution of problems with a large number of independent variables and the application of its modifications to the study of stationary processes in solid mechanics are considered. The subject of study is three successive stages of development of the method characterized by an expansion of the class of unknowns in the approximate expression: from the class of real numbers to the class of continuous functions (differentiable several times) of one of the variables (one-dimensional functions), and, finally, to a set of one-dimensional functions that include all variables. The structure of the projection of the initial multidimensional problem changes to fit, respectively, a system of algebraic equations, a system of ordinary differential equations, and, finally, a system of one-dimensional problems for various domain variables. According to the development of the Galerkin method, the classes of problems of stationary solid mechanics are also expanded in terms of eliminating certain constraints on the shape of the object, boundary conditions, physical and mechanical properties of the elastic medium, and others. The application of Galerkin methods at different stages of its development is demonstrated by solving two-dimensional and three-dimensional problems of statics and vibrations of a wide class of elements of shells and solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).

    MATH  Google Scholar 

  2. O. M. Belotserkovskii and P. I. Chushkin, “Numerical method of integral equations,” Zh. Vych. Mat. Mat. Fiz., No. 5, 731–759 (1962).

  3. E. I. Bespalova, “Stress state of nonclosed shells of revolution with clamped meridional edges,” Prikl. Mekh., 4, No. 7, 45–49 (1968).

    Google Scholar 

  4. E. I. Bespalova, “Free vibrations of layered open cylindrical shells,” Prikl. Mekh., 16, No. 11, 47–51 (1980).

    Google Scholar 

  5. E. I. Bespalova, “An approach to the study of free vibrations of elastic structural members,” Prikl. Mekh., 24, No. 1, 43–48 (1988).

    Google Scholar 

  6. E. I. Bespalova, “Solution of stationary problems of elasticity by the method of complete systems,” Zh. Vych. Mat. Mat. Fiz., No. 9, 1346–1353 (1989).

  7. E. I. Bespalova, Ya. M. Grigorenko, A. B. Kitaigorodskii, and A. I. Shinkar, “Investigation of free vibrations of orthotropic shells of revolution with variable parameters,” Prikl. Mekh., 13, No. 8, 43–50 (1977).

    Google Scholar 

  8. E. I. Bespalova, Ya. M. Grigorenko, A. B. Kitaigorodskii, and A. I. Shinkar, “Free vibrations of preloaded anisotropic shells of revolution,” Prikl. Mekh., 27, No. 5, 49–56 (1991).

    MATH  Google Scholar 

  9. O. I. Bespalova, Ya. M. Grigorenko, and A. B. Kitaigorodskii, “Calculating the dynamic characteristics of spatial bodies of finite dimensions,” Dop. NAN Ukrainy, No. 11, 63–66 (1999).

    Google Scholar 

  10. E. I. Bespalova and I. F. Latsinnik, “The stress state of nonclosed cylindrical shells of an arbitrary profile,” Prikl. Mekh., 5, No. 5, 40–45 (1969).

    Google Scholar 

  11. O. I. Bespalova and N. P. Yaremchenko, “Determination of the stress–strain state of joined flexible shells of revolution under subcritical loads,” Visn. Kyiv. Nats. Univ. im. Tarasa Shevchenka, Fiz.-Mat. Nauky, No. 4, 29–36 (2017).

  12. I. G. Bubnov, Works on the Theory of Plates [in Russian], GTTL, Moscow (1953).

    Google Scholar 

  13. V. Z. Vlasov, New Method for Designing Thin-walled Prismatic Folded Coatings and Shells, Gosstroiizdat, Moscow–Leningrad (1933).

  14. V. Z. Vlasov, “A new practical method for design of folded plates and shells,” Stroit. Prom., No. 11, 33–38 (1932).

  15. B. G. Galerkin, Collected Works, in 2 Vols. [in Russian], AN SSSR, Moscow (1952, 1953).

  16. S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).

    MathSciNet  Google Scholar 

  17. A. Ya. Grigorenko and S. A. Maltsev, “Free vibrations of conical shells with thickness vartying in two directions,” Dop. NAN Ukrainy, No. 11, 60–66 (2009).

    Google Scholar 

  18. Ya. M. Grigorenko, Isotropic and Anisotropic Layered Shells of Revolution with Variable Stiffness [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  19. Ya. M. Grigorenko and O. I. Bespalova, “Stress state of multilayer orthotropic shells of revolution of variable stiffness,” Dokl. AN USSR. Ser. A, No. 2 (1972).

  20. Ya. M. Grigorenko, O. I. Bespalova, and N. P. Boreiko, “Vibrations of coupled shell systems in a field of combined static loads,” Mat. Met. Fiz.-Mekh. Polya, 63, No. 3, 1–14 (2020).

  21. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar’, “Stability of shallow shells of revolution with linearly varying thickness,” Dokl. AN USSR, Ser. A, No. 6, 44–48 (1980).

  22. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar’, Free Vibrations of Elements of Shell Structures [in Russian], Naukova Dumka, Kyiv (1986).

  23. Ya. M. Grigorenko, O. I. Bespalova, and H. P. Urusova, “Reduction effect in problems of vibrations of preloaded shells,” Dop. NAN Ukrainy, No. 7, 66–70 (2008).

    Google Scholar 

  24. Ya. M. Grigorenko, A. T. Vasilenko, and G. P. Golub, Statics of Anisotropic Shells with Finite Shear Stiffness [in Russian], Naukova Dumka, Kyiv (1987).

    Google Scholar 

  25. Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova, Design of Noncircular Cylindrical Shells [in Russian], Naukova Dumka, Kyiv (1977).

    Google Scholar 

  26. Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova, Statics of Anisotropic Thick-Walled Shells [in Russian], Vyshcha Shkola, Kyiv (1985).

  27. Ya. M. Grigorenko, A. Ya. Grigorenko, V. P. Nespriadko, N. N Tormakhov, and S. V. Zakurko, “On the bearing capacity of clasps for removable dental prostheses made of thermoplastics,” Dop. NAN Ukrainy, No. 12, 111–118 (2015).

    Google Scholar 

  28. Y. M. Grigorenko, O. Ya. Grigorenko, M. M. Kryukov, and S. M. Yaremchenko, “Stress–strain state of elliptic cross-section cylindrical shells with beveled cuts,” Dop. NAN Ukrainy, No. 6, 21–29 (2020).

    MATH  Google Scholar 

  29. Ya. M. Grigorenko and V. I. Gulyaev, “Nonlinear problems of shell theory and their solution methods (review),” Int. Appl. Mech., 27, No. 10, 929–947 (1991).

    MATH  Google Scholar 

  30. Ya. M. Grigorenko and N. N. Kryukov, Numerical Solution of Static Problems for Flexible Layered Shells with Variable Parameters [in Russian], Naukova Dumka, Kyiv (1988).

    Google Scholar 

  31. L. H. Donnell, Beams, Plates, and Shells, McGraw Hill, New York (1976).

    MATH  Google Scholar 

  32. A. A. Dorodnitsyn, “One method for solving the equations of a laminar boundary layer,” ZhPMTF, No. 3, 111–118 (1960).

    Google Scholar 

  33. A. A. Dorodnitsyn, “Computational methods of mathematical physics. Problems and prospects,” in: Proc. of Sci. Conf. on Computational Mathematics in Modern Scientific and Technological Progress [in Russian], Kanev (1974), pp. 28–34.

  34. E. Kamke, Handbook of Ordinary Differential Equations [in German], Chelsea, New York (1974).

    Google Scholar 

  35. L. V. Kantorovich, “A direct method for approximate solution to the problem of the minimum of a double integral,” Izv. AN SSSR, Mat. Estestv. Nauk, No. 5, 647–653 (1933).

  36. L. V. Kantorovich, “A method for the approximate solution of partial differential equations,” Dokl. AN SSSR, 2, No. 9, 532–534 (1934).

    Google Scholar 

  37. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis, Fizmatgiz, Moscow–Leningrad (1962).

    MATH  Google Scholar 

  38. V. F. Kirichenko and V. A. Kris’ko, “Method of variational iterations in the theory of plates and its justification,” Prikl. Mekh., 16, No. 4,71–76 (1981).

  39. Von L. Collatz, Eigenvalue Problems with Engineering Applications [in German], Akad. Verlagsges., Leipzig (1963).

    Google Scholar 

  40. M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreiko, et al., Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1969).

  41. I. Ya. Amiro and V. A. Zarutskii, Theory of Ribbed Shells, Vol. 2 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1980).

  42. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells with Variable Stiffness, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1981).

  43. A. N. Guz (ed.), Ya. M. Grigorenko, and I Yu Babich, Free Vibrations of Inhomogeneous Anisotropic Cylinders, Mechanics of Structural Members, Vol. 2 of the three-volume series Mechanics of Composite Materials and Structural Members [in Russian], Naukova Dumka, Kyiv (1983).

  44. V. D. Kubenko (ed.), Dynamics of Structural Members, Vol. 9 of the 12-volume series Mechanics of Composite Materials [in Russian], ASK, Kyiv (1999).

  45. S. G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press, Oxford (1964).

    MATH  Google Scholar 

  46. I. S. Natanson, Constructive Theory of Functions [in Russian], Gostekhizdat, Moscow–Leningrad (1949).

    Google Scholar 

  47. F. I. Oseled’ko, “Bending of a clamped rectangular plate,” Sb. St. Voron. Inzh.-St. Inst., No. 4, 63–68 (1958).

  48. V. G. Prokopov, E. I. Bespalova, and Yu. V. Sherenkovskii, “A new method of mathematical analysis of transfer processes,” Prom. Teplomekh., 1, No. 2, 35–41 (1979).

    Google Scholar 

  49. V. G. Prokopov, E. I. Bespalova, and Yu. V. Sherenkovskii, “Development of variational methods for solving multidimensional heat-conduction problems,” Izv. Vuz. Energ., No. 8, 56–62 (1981).

  50. V. G. Prokopov, E. I. Bespalova, and Yu. V. Sherenkovskii, “Method of reduction to the ordinary differential equations of L. V. Kantorovich and a general method for the solution of multidimensional heat-transfer equations,” J. Eng. Phys., 42, No. 6, 687–692 (1982).

    Article  Google Scholar 

  51. V. L. Rvachev, Theory of R-functions and Some Applications [in Russian], Naukova Dumka, Kyiv (1982).

    MATH  Google Scholar 

  52. Modern Problems of Applied Mathematics and Informatics. Collection of Scientific Works [in Ukrainian], Lviv. Nats. Univ. im. Ivana Franka, Lviv (2015).

    Google Scholar 

  53. S. P. Timoshenko, History of the Science of the Resistance of Materials with Brief Information from the Theory of Elasticity and the Theory of Structures [in Russian], Gos. Izd. Tekhn.-Teor. Lit., Moscow (1957).

    Google Scholar 

  54. C. A. J. Fletcher, Computational Galerkin Method, Springer, Berlin (1984).

    Book  MATH  Google Scholar 

  55. D. R. Hartree, The Calculation of Atomic Structures, John Wiley and Sons, New York, (1957).

    MATH  Google Scholar 

  56. Ya. M. Grigorenko, E. I. Bespalova, A. T. Vasilenko, et al., Numerical Solution of Static Boundary-Value Problems for Orthotropic Shells of Revolution on Ì-220 Computer [in Russian], Naukova Dumka, Kyiv (1971).

    Google Scholar 

  57. Ya. M. Grigorenko, A. T. Vasilenko, E. I. Bespalova, et. al., Numerical Solution of Boundary-Value Problems of the Statics of Orthotropic Shells with Variable Parameters [in Russian], Naukova Dumka, Kyiv (1975).

    Google Scholar 

  58. H. Altenbach, J. Chróœcielewski, V. A. Eremeyev, and K. Wiœniewski, Recent Developments in the Theory of Shells, Springer, Cham (2019).

    Book  Google Scholar 

  59. J. Awrejcewicz, L. Kurpa, and T. Shmatko, “Analysis of geometrically nonlinear vibrations of functionally graded shallow shells of a complex shape,” Lat. Am. J. Solids Struct., 9, No. 14, 1648–1668 (2017).

    Article  Google Scholar 

  60. R. C. Barta, L. F. Qian, and L. M. Chen, “Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials,” J. Sound Vibr., 270, No. 4–5, 1074–1086 (2004).

    Google Scholar 

  61. V. Bastun, E. Bespalova, G. Urusova, and A. Minakov, “Monitoring of the technical state of a linear part of main pipelines by nondestructive express control methods,” J. Cont. Eng. Tech., 4, No. 2, 141–146 (2014).

    Google Scholar 

  62. E. I. Bespalova, “Solution of nonlinear problems of the theory of shells with the use of complete-system methods,” Int. Appl. Mech., 28, No. 8, 511–516 (1992).

    Article  Google Scholar 

  63. E. I. Bespalova, “Free vibrations of spatial bodies with elastic properties of low symmetry,” Int. Appl. Mech., 38, No. 1, 90–94 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  64. E. I. Bespalova, “Vibrations of polygonal plates with various boundary conditions,” Int. Appl. Mech., 43, No. 5, 526–533 (2007).

    Article  Google Scholar 

  65. E. I. Bespalova, “Determining the natural frequencies an elastic parallelepiped by the advanced Kantorovich-Vlasov method,” Int. Appl. Mech., 47, No. 4, 410–421 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  66. E. I. Bespalova, “Complete systems method for linear and nonlinear problems of shallow shells theory,” Thin-Walled Struct., No. 142, 277–286 (2019).

  67. E. I. Bespalova and N. P. Boreiko, “Determination of the natural frequencies of compound anisotropic shell systems using various deformation models,” Int. Appl. Mech., 55, No. 1, 41–54 (2019).

    Article  MathSciNet  Google Scholar 

  68. Å. I. Bespalova, Ja. M. Grigorenko, and G. P. Urusova, “Solving stationary problems of shell theory with allowance for transverse reduction,” in: Proc. 9th SSTA Conf., Shell Struct.: Theory and Applications (Vol. 2), Poland, Jurata, October 14–16 (2009), pp. 245–249.

  69. E. I. Bespalova and A. B. Kitaigorodskii, “Free vibrations of an anisotropic plate,” Int. Appl. Mech., 31, No. 8, 624–629 (1995).

    Article  Google Scholar 

  70. E. I. Bespalova and A. B. Kitaigorodskii, “Effect of structural anisotropy on the vibration frequency of cylindrical shells,” Int. Appl. Mech., 32, No. 7, 540–544 (1996).

    Article  MATH  Google Scholar 

  71. E. I. Bespalova and A. B. Kitaigorodskii, “Steady elasticity-theory problems with high-gradient loads and localized mass and rigidity inhomogeneities,” Int. Appl. Mech., 34, No. 9, 846–852 (1998).

    Article  Google Scholar 

  72. E. I. Bespalova and A. B. Kytagorodskij, “Modal analysis of vibrations of viscoelastic laminated plates,” Arch. of Civil Engng., 46, No. 3, 377–382 (2000).

    Google Scholar 

  73. E. I. Bespalova and A. B. Kytaygorodskii, “The Full Systems Method in dynamics problems of 3D bodies,” Eng. Trans., 48, No. 4, 395–403 (2000).

    MATH  Google Scholar 

  74. E. I. Bespalova and A. B. Kytaygorodskii, “Advanced Kantorovich’s method for biharmonic problems,” J. Eng. Math., No. 46, 213–226 (2003).

  75. E. I. Bespalova and G. P. Urusova, “Determining the natural frequencies of highly inhomogeneous shells of revolution with transverse strain,” Int. Appl. Mech., 43, No. 9, 980–987 (2007).

    Article  Google Scholar 

  76. E. Bespalova and G. Urusova, “Vibration of highly inhomogeneous shells of revolution under static loading,” J. Mech. Mat. Struct., 3, No. 7, 1299–1313 (2008).

    Article  Google Scholar 

  77. E. I. Bespalova and G. P. Urusova, “Solving the torsion problem for an anisotropic prism by the advanced Kantorovich–Vlasov method,” Int. Appl. Mech., 46, No. 2, 149–159 (2010).

    Article  MATH  Google Scholar 

  78. E. I. Bespalova and G. P. Urusova, “Identifying the domains of dynamic instability for inhomogeneous shell systems under periodic loads,” Int. Appl. Mech., 47, No. 2, 186–194 (2011).

    Article  MATH  Google Scholar 

  79. E. Bespalova and G. Urusova, “Solution of the Lame problem by the complete systems method,” Int. J. for Comp. Meth. in Engng. Sci. and Mech., 14, No. 2, 159–167 (2013).

  80. E. I. Bespalova and G. P. Urusova, “Three-dimensional analysis of the lower frequencies of a cantilevered anisotropic parallelepiped,” Int. Appl. Mech., 50, No. 4, 365–377 (2014).

    Article  MATH  Google Scholar 

  81. E. I. Bespalova and G. P. Urusova, “Stress state of branched shells of revolution subject to transveres shear and reduction,” Int. Appl. Mech., 51, No. 4, 410–419 (2015).

    Article  Google Scholar 

  82. E. I. Bespalova and G. P. Urusova, “Vibrations of shells of revolution with branched meridian,” Int. Appl. Mech., 51, No. 1, 82–89 (2016).

    Article  MathSciNet  Google Scholar 

  83. E. I. Bespalova and G. P. Urusova, “Vibrations of compound shells of revolution with elliptical toroidal members,” Thin-Walled Struct., Vol. 123, 185–194 (2018).

    Article  Google Scholar 

  84. B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, Cambridge Academic Press, Cambridge (1972).

    MATH  Google Scholar 

  85. A. Ya. Grigorenko and T. L. Efimova, “Using spline-approximation to solve problems of axisymmetric free vibration of thick-walled orthotropic cylinders,” Int. Appl. Mech., 44, No. 10, 1137–1147 (2008).

    Article  MathSciNet  Google Scholar 

  86. A. Ya. Grigorenko, T. L. Efimova, and L. V. Sokolova, “On the approach to studying free vibrations of cylindrical shells of variable thickness in the circumferential direction within a refined statement,” J. Math. Sci., 181, No. 4, 548–563 (2010).

    Article  MATH  Google Scholar 

  87. A. Ya. Grigorenko, I. A. Loza, and S. N. Yaremchenko, “Numerical Analysis of Free Vibrations of Piezoelectric Cylinders,” in: New Achievements in Continuum Mechanics and Thermodynamics, Chapter 14, Springer, Cham (2019), pp. 187–196.

  88. A. Grigorenko and S. Yaremchenko, “Static problems for noncircular cylindrical shells: Classical and refined theories,” in: Proc. 9th Conf. on Shell Structures and Applications, 2, Gdansk-Jurata, Taylor and Francis Group, UK, London (2009), pp. 241–244.

  89. Ya. M. Grigorenko, “Approaches to the numerical solution of linear and nonlinear problems in shell theory in classical and refined formulations,” Int. Appl. Mech., 32, No. 6, 409–442 (1996).

    Article  MATH  Google Scholar 

  90. Ya. M. Grigorenko, O. A. Avramenko, and S. N. Yaremchenko, “Spline-approximations solution of two–dimensional problems of static for orthotropic conical shells in a refined formulations,” Int. Appl. Mech., 43, No. 11, 1218–1227 (2007).

    Article  MathSciNet  Google Scholar 

  91. Ya. M. Grigorenko, O. I. Bespalova, and N. P. Boreiko, “Stability of systems compound of the shells of revolution with variable Gaussian curvature,” J. of Mathem. Sci., 258, No. 4, 527–544 (2021).

    Article  MATH  Google Scholar 

  92. Ya. Grigorenko, E. Bespalova, and N. Yaremchenko, “Some stationary deformation problems for compound shells of revolution,” Visn. Nats. Tekhn. Un. “Kharkiv Polytechnic Institute”, NTU “KhPI,” No. 26, 114–117 (2016).

    Google Scholar 

  93. Ya. M. Grigorenko and A. Ya. Grigorenko, “Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review),” Int. Appl. Mech., 49, No. 2, 123–193 (2013).

    Article  MathSciNet  Google Scholar 

  94. Ya. M. Grigorenko, A. Ya. Grigorenko, and E. I. Bespalova, “On Some Recent Discrete-Continuum Approaches to the Solution of Shell Problems,” in: Recent Developments in the Theory of Shells, Springer, Cham (2019), pp. 285–313.

  95. Ya. M. Grigorenko, À. Ya. Grigorenko, and L. S. Rozhok, “Solving the stress problem for solid cylinders with different end conditions,” Int. App. Mech., 42, No. 6, 629–635 (2006).

    Article  MATH  Google Scholar 

  96. Ya. M. Grygorenko and L. S. Rozhok, “Analysis of the stress state of hollow cylinders with concave corrugated cross sections,” J. Math. Sci., 228, No. 1, 80–89 (2018).

    Article  MathSciNet  Google Scholar 

  97. M. K. Huang and H. D. Conway, “Bending of a uniformly rectangular plate with two adjacent edges clamped the others either simply supported or free,” J. Appl. Mech., No. 19, 451–460 (1952).

  98. A. D. Kerr and H. Alexander, “An application of the extended Kantorovich method to the stress analysis of clamped rectangular plate,” Àcta. Mech., 6, No. 2–3, 180–196 (1968).

    MATH  Google Scholar 

  99. A. W. Leissa and F. W. Niedenfuhr, “Bending of a square plate with two adjacent edges free and the others clamped or simply supported,” AIAA J., 1, No. 1, 116–120 (1963).

    Article  Google Scholar 

  100. H. Nagino, T. Mikami, and T. Mizusawa, “Three-dimensional free vibration analysis of isotropic rectangular plates using the B-spline Ritz method,” J. Sound and Vibration, 317, No. 1–2, 329–353 (2008).

    Article  Google Scholar 

  101. A. T. Vasilenko, E. I. Bespalova, and G. P. Urusova, “Contact interaction between a laminated shell of revolution and a rigid or elastic foundation,” Int. App. Mech., 41, No. 5, 520–525 (2005).

    Article  MATH  Google Scholar 

  102. D. Zwillinger, “Coarsening of non-spherical particles,” J. of Crystal Growth, 94, No. 1, 159–165 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. M. Grigorenko.

Additional information

Translated from Prykladna Mekhanika, Vol. 59, No. 1, pp. 3–68, January–February 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, Y.M., Bespalova, O.I. & Grigorenko, O.Y. One Line of Development of the Galerkin Projection Method in Problems of Stationary Solid Mechanics (Review). Int Appl Mech 59, 1–58 (2023). https://doi.org/10.1007/s10778-023-01198-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-023-01198-x

Keywords

Navigation