Skip to main content
Log in

Studies of Subcritical Crack Growth in Viscoelastic Anisotropic Bodies Using the Continued Fraction Operator Method: Synthesis and Summary*

  • Published:
International Applied Mechanics Aims and scope

A technique of solving problems of linear viscoelasticity is presented. Some basics are given on the application of continued fractions to solve some problems for viscoelastic anisotropic bodies with slowly growing cracks. It is shown, using examples, that the operator continued fraction technique can be effectively used for solving complex problems of fracture mechanics for modern anisotropic composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Z. Amusin and A. M. Linkov, “On the use of the method of variable modules for solving a class of linear hereditary creep problems,” Izv. AN SSSR, No. 6, 162–165 (1974).

    Google Scholar 

  2. I. V. Andrianov, J. Awrejcewicz, and V. V. Danishevskyy, Asymptotical Mechanics of Composites, Ser. Advanced Structured Materials, Vol. 7, Springer, Cham (2018).

  3. G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture,” Adv. Appl. Mech., 7, 55–129 (1962).

    Article  MathSciNet  Google Scholar 

  4. O. S. Bogdanova, “Mode I crack initiation in orthotropic viscoelastic plates under biaxial loading,” J. Math. Sci., 201, No. 2, 163–174 (2014).

    Article  MathSciNet  Google Scholar 

  5. L. Boltzmann, “Zur Theorie der elastischen Nachwirkung,” Annalen der Physik, 241, No. 11, 430–432 (1874).

  6. E. Bouchbinder and E. A. Brener, “Viscoelastic fracture of biological composites,” J. Mech. Phys. Solids, 59, No. 11, 2279–2293 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. C. Brinson and T. S. Gates, “Viscoelasticity and aging of polymer matrix composites,” in: A. Kelly and C. Zweben (eds.), Comprehensive Composite Materials, Pergamon, Oxford (2000), pp. 333–368.

    Chapter  Google Scholar 

  8. C. Chazal and F. Dubois, “A new incremental formulation in the time domain for crack initiation in an orthotropic linearly viscoelastic solid,” Mech. Time-Depend. Mater., 5, No. 3, 229–253 (2001).

    Article  Google Scholar 

  9. Y. O. Chornoivan, “Wedging an orthotropic body,” Int. Appl. Mech., 37, No. 11, 1475–1479 (2001).

    Article  Google Scholar 

  10. R. M. Christensen, Theory of Viscoelasticity, Dover Publications Inc., London (2010).

    Google Scholar 

  11. B. Davies and B. Martin, “Numerical inversion of the Laplace transform: a survey and comparison of methods,” J. Comp. Phys., 33, No. 1, 1–32 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. S. Dugdale, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids, 8, No. 2, 100–104 (1960).

    Article  Google Scholar 

  13. V. G. Gromov, “Solution of linear-viscoelasticity boundary value problems,” Polymer Mech., 3, No. 6, 657–663 (1967).

    Article  Google Scholar 

  14. W. B. Jones and W. J. Thron, Continued Fractions, Analytic Theory and Applications, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, New York (1980).

  15. A. A. Kaminsky, Fracture Mechanics of Viscoelastic Bodies [in Russian], Naukova Dumka, Kyiv (1980).

    Google Scholar 

  16. A. A. Kaminsky, “Investigations in the field of the mechanics of the fracture of viscoelastic bodies,” Sov. Appl. Mech., 16, No. 9, 741–759 (1980).

    Article  Google Scholar 

  17. A. A. Kaminsky, Fracture of Viscoelastic Bodies with Cracks [in Russian], Naukova Dumka, Kyiv (1990).

    Google Scholar 

  18. A. A. Kaminsky, “Subcritical crack growth in polymer composite materials under creep,” in: Advances in Fracture Resistance and Structural Integrity (Selected Papers from ICF8), Pergamon, Oxford (1994), pp. 513–520.

  19. A. A. Kaminsky, “Subcritical crack growth in polymer composite materials,” in: G. P. Cherepanov (ed.), Fracture: A Topical Encyclopedia of Current Knowledge, Krieger, Malabar (1998), pp. 758–763.

    Google Scholar 

  20. A. A. Kaminsky, “Study of the deformation of anisotropic viscoelastic bodies,” Int. Appl. Mech., 36, No. 11, 1434–1457 (2000).

    Article  Google Scholar 

  21. A. A. Kaminsky and Y. O. Chornoivan, “On deforming of a linear viscoelastic orthotropic half-space under the turning rigid cylindrical roller,” Eur. J. Mech., A. Solids, 20, No. 6, 953–968 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. A. Kaminsky and Y. O. Chornoivan, “Closing of wedged crack in orthotropic viscoelastic composite,” Int. J. Fract., 130, No. 3, 635–649 (2004).

    Article  MATH  Google Scholar 

  23. A. A. Kaminsky and Y. O. Chornoivan, “Determination of safe static loads for polymeric composites weakened by cracks,” Int. Appl. Mech., 54, No. 4, 384–392 (2018).

    Article  MathSciNet  Google Scholar 

  24. A. A. Kaminsky and D. A. Gavrilov, Delayed Fracture of Polymeric and Composite Materials with Cracks [in Russian], Naukova Dumka, Kyiv (1992).

    Google Scholar 

  25. A. A. Kaminsky and E. E. Kurchakov, “Influence of tension along a mode I crack in an elastic body on the formation of a nonlinear zone,” Int. Appl. Mech., 51, No. 2, 130–148 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. A. Kaminsky and E. E. Kurchakov, “Fracture process zone at the tip of a mode I crack in a nonlinear elastic orthotropic material,” Int. Appl. Mech., 55, No. 1, 23–40 (2019).

    Article  MathSciNet  Google Scholar 

  27. A. A. Kaminsky and M. F. Selivanov, “Stable growth of penny-shaped crack in viscoelastic composite material under time-dependent loading,” Theor. Appl. Fract. Mech., 35, No. 3, 211–218 (2001).

    Article  Google Scholar 

  28. A. A. Kaminsky and M. F. Selivanov, “A method for determining the viscoelastic characteristics of composites,” Int. Appl. Mech., 41, No. 5, 469–480 (2005).

    Article  MATH  Google Scholar 

  29. A. A. Kaminsky and M. F. Selivanov, “On the application of branched operator continued fractions for a boundary problem of linear viscoelasticity,” Int. Appl. Mech., 42, No. 1, 115–126 (2006).

    Article  Google Scholar 

  30. A. A. Kaminsky and M. F. Selivanov, “Mode II macrocrack initiation in orthotropic composite viscoelastic plate,” Int. J. Fract., 139, No. 1, 153–160 (2006).

    Article  MATH  Google Scholar 

  31. A. A. Kaminsky and M. F. Selivanov, “Growth of a penny-shaped crack with a nonsmall fracture process zone in a composite,” Int. Appl. Mech., 44, No. 8, 866–871 (2008).

    Article  Google Scholar 

  32. A. A. Kaminsky and M. F. Selivanov, “Modeling subcritical crack growth in a viscoelastic body under concentrated forces,” Int. Appl. Mech., 53, No. 5, 538–544 (2017).

    Article  MathSciNet  Google Scholar 

  33. A. A. Kaminsky, M. F. Selivanov, and Y. O. Chornoivan, “Subcritical growth of a mode III crack in a viscoelastic composite body,” Int. Appl. Mech., 49, No. 3, 293–302 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. A. Kaminsky, M. F. Selivanov, and Y. O. Chornoivan, “Fractional-order operators in fracture mechanics,” in: H. Altenbach and A. Öchsner (eds.), Encyclopedia of Continuum Mechanics, Springer, Berlin (2020), pp. 982–988.

    Chapter  Google Scholar 

  35. A. A. Kaminsky, M. F. Selivanov, and Y. O. Chornoivan, “Kinetics of mode I crack growth in a viscoelastic polymeric material with nanoinclusions,” Int. Appl. Mech., 54, No. 1, 34–40 (2018).

    Article  MathSciNet  Google Scholar 

  36. R. P. Kanwal, Linear Integral Equations, Springer, New York (1971).

    MATH  Google Scholar 

  37. W. G. Knauss, “A review of fracture in viscoelastic materials,” Int. J. Fract., 196, No. 1–2, 99–146 (2015).

    Article  Google Scholar 

  38. W. G. Knauss, “Mechanics of polymer fracture,” Appl. Mech. Rev., 26, No. 1, 1–17 (1973).

    Google Scholar 

  39. B. V. Kostrov and L. V. Nikitin, “Some general problems of mechanics of brittle fracture,” Archiwum Mechaniki Stosowanej, 22, No. 6, 749–775 (1970).

    MATH  Google Scholar 

  40. S. G. Lekhnitsky, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, Boston (1963).

    Google Scholar 

  41. M. Ya. Leonov and V. V. Panasyuk, “Growth of the smallest cracks in solids,” Prikl. Mekh., 5, No. 4, 391–401 (1959).

    Google Scholar 

  42. V. I. Malyi, “Quasi-constant operators in the theory of viscoelasticity of non-aging materials,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 4, 77–86 (1980).

  43. L. N. McCartney, “Crack propagation, resulting from a monotonic increasing applied stress, in a linear viscoelastic material,” Int. J. Fract., 13, No. 5, 641–654 (1977).

    Article  MathSciNet  Google Scholar 

  44. R. Moutou Pitti, F. Dubois, O. Pop, and J. Absi, “A finite element analysis for the mixed mode crack growth in a viscoelastic and orthotropic medium,” Int. J. Solids Struct., 46, No. 20, 3548–3555 (2009).

    Article  MATH  Google Scholar 

  45. A. C. Pipkin, Lectures on Viscoelasticity Theory, Springer-Verlag, New York (1986).

    Book  MATH  Google Scholar 

  46. I. Yu. Podil’chuk, “Study of stress concentration in a viscoelastic orthotropic plate with an elliptical hole,” Int. Appl. Mech., 33, No. 9, 731–739 (1997).

    Article  Google Scholar 

  47. I. Yu. Podil’chuk, “Stress concentration in viscoelastic transversally isotropic hyperboloid,” Int. Appl. Mech., 35, No. 3, 245–254 (1999).

    Article  MATH  Google Scholar 

  48. Yu. N. Rabotnov, Elements of Hereditary Solid Mechanics, Mir, Moscow (1980).

    MATH  Google Scholar 

  49. Yu. A. Rossikhin, “Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids,” Appl. Mech. Rev., 63, No. 1, 010701–01–010701–12 (2009).

  50. G. N. Savin and A. A. Kaminsky, “The growth of cracks during the failure of hard polymers,” Sov. Appl. Mech., 3, No. 9, 22–25 (1967).

    Article  Google Scholar 

  51. G. N. Savin and A. A. Kaminsky, “A model for the rupture of viscoelastic media,” Sov. Appl. Mech., 7, No. 9, 941–948 (1971).

    Article  Google Scholar 

  52. R. A. Schapery, “A method of viscoelastic stress analysis using elastic solutions,” J. Franklin Inst., 279, No. 4, 268–289 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  53. R. A. Schapery, “Viscoelastic behavior and analysis of composite materials,” in: Vol. 2. G. P. Sendeckyj (ed.), Mechanics of Composite Materials, Elsevier, New York (1974), pp. 85–102.

  54. R. A. Schapery, “Time-dependent fracture: continuum aspects of crack growth,” in: Encyclopedia of Materials Science and Engineering, Pergamon, Oxford (1986), pp. 5043–5053.

  55. M. F. Selivanov, “Effective properties of a linear viscoelastic composite,” Int. Appl. Mech., 45, No. 10, 1084–1091 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  56. M. F. Selivanov, “Subcritical and critical states of a crack with failure zones,” Appl. Math. Model., 72, No. 2, 104–128 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  57. M. F. Selivanov and Y. O. Chornoivan, “A combined approach of the Laplace transform and Padé approximation solving viscoelasticity problems,” Int. J. Solids Struct., 44, No. 1, 66–76 (2007).

    Article  MATH  Google Scholar 

  58. M. F. Selivanov and Y. O. Chornoivan, “Determining displacements of contacting crack faces in orthotropic plate,” Int. Appl. Mech., 53, No. 4, 407–418 (2017).

    Article  MathSciNet  Google Scholar 

  59. M. F. Selivanov and Y. O. Chornoivan, “Computational optimization of characteristics for composites of viscoelastic components,” J. Eng. Math., 74, No. 1, 91–100 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  60. M. F. Selivanov and Y. O. Chornoivan, “The initial period of mixed-mode crack growth in viscoelastic composite with Rabotnov’s relaxation law,” Int. J. Mech., 8, No. 3, 371–376 (2014).

    Google Scholar 

  61. M. F. Selivanov and Y. O. Chornoivan, “A semi-analytical solution method for problems of cohesive fracture and some of its applications,” Int. J. Fract., 212, No. 1, 113–121 (2018).

    Article  Google Scholar 

  62. M. F. Selivanov, Y. O. Chornoivan, and O. P. Kononchuk, “Determination of crack opening displacement and critical load parameter within a cohesive zone model,” Continuum Mech. Thermodyn., 31, No. 2, 569–586 (2019).

    Article  MathSciNet  Google Scholar 

  63. V. Volterra, “Sulle equazioni integro-differenziali della teoria dell’elasticitã,” Atti della Reale Accademia dei Lincei. Rendiconti. Classe di Scienze Fisiche Matematiche e Naturali, 18, No. 2, 295–301 (1909).

  64. A. A. Wells, “Critical tip opening displacement as fracture criterion,” in: Proc. Crack Propagation Symposium, 1 (1961), pp. 210–221.

  65. J. G. Williams, Fracture Mechanics of Polymers, Horwood, Chichester (1984).

    Google Scholar 

  66. M. P. Wnuk, “Accelerating crack in a viscoelastic solid subject to subcritical stress intensity,” in: Proc. Int. Conf. on Dynamic Crack Propagation, Springer, Berlin (1973), pp. 273–280.

  67. X. Xu, X. Cheng, Z. Zhou, and C. Xu, “An analytical approach for the mixed-mode crack in linear viscoelastic media,” Eur. J. Mech., A. Solids, 52, No. 1, 12–25 (2015).

  68. A. N. Zorin and M. I. Rozovskii, “A method of specifying an irrational function of an integral operator,” Prikl. Mekh., 1, No. 9, 81–88 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kaminsky.

Additional information

*This study was sponsored by the budget program “Support for Priority Areas of Scientific Research” (KPKVK 6541230).

Published in Prikladnaya Mekhanika, Vol. 57, No. 3, pp. 18–35, May–June 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminsky, A.O. Studies of Subcritical Crack Growth in Viscoelastic Anisotropic Bodies Using the Continued Fraction Operator Method: Synthesis and Summary*. Int Appl Mech 57, 263–281 (2021). https://doi.org/10.1007/s10778-021-01078-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-021-01078-2

Keywords

Navigation