Skip to main content

Advertisement

Log in

Application of the Inhomogeneous Elasticity Theory to the Description of the Mechanical State of a Single-Rooted Tooth*

  • Published:
International Applied Mechanics Aims and scope

Some preliminary experience in application of the inhomogeneous elasticity theory to the description of the mechanical state of a single-rooted tooth is outlined. A few simple models of the axisymmetric state of cylindrical isotropic and transversely isotropic bodies are considered and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Zagorskii, I. M. Makeeva, and V. V. Zagorskii, “Density of the hard tissues of a tooth,” Part 1, Rosiisk. Stomatolog. Zh., No. 2, 29–34 (2012).

  2. V. A. Zagorskii, I. M. Makeeva, and V. V. Zagorskii, “Strength properties of the hard tissues of teeth,” Part 11, Rosiisk. Stomatolog. Zh., No. 1, 9–14 (2014).

  3. M. A. Koltunov, Yu. N. Vasil’ev, and V. A. Chernykh, Elasticity and Strength of Cylindrical Bodies [in Russian], Vyshchaya Shkola, Moscow (1975).

    Google Scholar 

  4. V. A. Lomakin, Elasticity Theory of Inhomogeneous Bodies [in Russian], Izd. Moskovsk. Univ., Moscow (1976).

    Google Scholar 

  5. V. Birman and L. W. Bird, “Modeling and analysis of FGM and structures,” Appl. Mech. Rev., 60, 195–216 (2007).

    Article  Google Scholar 

  6. C. Catani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructures, World Scientific Publishing Co. Pte. Ltd, Singapore–London (2007).

  7. H. G. Hahn, Elastizitastheorie. Grunlagen der Linearen Theorie and Anwendungen auf Eindimensionale, Ebene und Raumliche Probleme, B. G. Teubner, Stuttgart (1985).

  8. A. Ya. Grigorenko, V. V. Los’, V. A. Malanchuk, and N. N. Tormakhov, “Stress state of a threaded joint in a dental implant-bone system,” Int. Appl. Mech., 56, No. 1, 33–39 (2020).

  9. A. Ya. Grigorenko, I. A. Loza, and Ya. M. Grigorenko, “Numerical analysis of dynamical processes in inhomogeneous piezoceramic cylinders (review),” Int. Appl. Mech., 56, No. 5, 523–591 (2020).

  10. N. Gupta, S. K. Gupta, and B. J. Mueller, “Analysis of a functionally graded particulate composite under flexural loading conditions,” Mater. Sci. Eng., A431, 439–447 (2008).

    Article  Google Scholar 

  11. E. Kamke, Differentialgleichungen. Losungmethoden und Losungen 1, Gewohnliche Differentialgleichungen, Vieweg + Teubner, Wiesbaden (1977).

  12. M. Kashtalyan, “Three-dimensional solution for bending of functionally graded rectangular plates,” Europ. J. Mech. A/Solids, 23, No. 5, 853–864 (2004).

    Article  MathSciNet  Google Scholar 

  13. M. Kashtalyan and M. Menshykova, “Three-dimensional elastic deformation of a functionally graded coating/substrate system,” Int. J. Solids Struct., 44, No. 16, 5272–5288 (2007).

    Article  Google Scholar 

  14. M. Kashtalyan and M. Menshykova, “Three-dimensional analysis of a functionally graded coating/substrate system of finite thickness,” Phil. Trans. Royal Society A, 336 (1871), 1821–1826 (2008).

    Article  Google Scholar 

  15. M. Kashtalyan and M. Menshykova, “Three-dimensional elasticity solution for sandwich panels with a functionally graded core,” Compos. Struct., 74, No. 2, 326–336 (2009).

    Google Scholar 

  16. M. Kashtalyan and J. J. Ryshchitsky, “Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media,” Int. J. Solids Struct., 46, No. 19, 3654–3662 (2009).

    Google Scholar 

  17. M. Kashtalyan and J. J. Ryshchitsky, “General Hoyle–Youngdahl and Love solutions in the linear Inhomogeneous theory of elasticity,” Int. Appl. Mech., 46, No. 1, 1–17 (2010).

    Article  MathSciNet  Google Scholar 

  18. M. Kashtalyan and J. J. Ryshchitsky, “General Love solutions in the linear isotropic inhomogeneous theory of radius-dependent elasticity,” Int. Appl. Mech., 46, No. 3, 245–254 (2010).

    Article  MathSciNet  Google Scholar 

  19. W. A. Kayssen and B. Ilschner, “FGM research activity in Europe,” MRS Bul., 20, 22–26 (1995).

    Article  Google Scholar 

  20. M. Koizumi, “Concept of FGM,” Ceramic. Trans., 34, 3–10 (1993).

    Google Scholar 

  21. M. Koizumi, “FGM activities in Japan,” Composites B, B28, 1–4 (1997).

    Article  Google Scholar 

  22. X. Y. Li, H. J. Ding, and W. Q. Chen, “Elasticity solutions for a transversely isotropic FGM circular plate subject to an axisymmetric transverse load qrk,” Int. J. Solids Struct., 45, 191–210 (2008).

    Article  Google Scholar 

  23. X. Y. Li, H. J. Ding, and W. Q. Chen, “Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic FGM,” Acta Mech., 196, 139–159 (2008).

    Article  Google Scholar 

  24. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover Publications, New York (1944).

    MATH  Google Scholar 

  25. A. I. Lurie, Theory of Elasticity, Springer, Berlin (2000).

    Google Scholar 

  26. Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford, FGM: Design, Processing and Applications, Kluwer Academic, Dordrecht (1999).

    Google Scholar 

  27. M. J. Pindera, S. M. Arnold, J. Aboudi, and D. Hui, “Use of composites in FGM,” Composites Eng., 4, 1–145 (1994).

    Article  Google Scholar 

  28. V. P. Plevako, “On the theory of elasticity of inhomogeneous media,” J. Appl. Math. Mech., 35, No. 5, 806–813 (1971).

    Article  Google Scholar 

  29. Y. N. Shabana and N. Noda, “Numerical evaluation of the thermomechanical effective properties of FGM using homogenization method,” Int. J. Solids Struct., 45, 3494–3506 (2008).

    Article  Google Scholar 

  30. S. Suresh and A. Mortensen, Fundamentals of FGM, Maney, London (1998).

    Google Scholar 

  31. M. Yamanouchi, M, Koizumi, T. Hirai, and I. Shiota, in: Proc. 1st Symp. on FGM Forum and the Society of Non-traditional Technology, Japan (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Malanchuk or J. J. Rushchitsky.

Additional information

*This study was sponsored by the budget program “Support for Priority Areas of Scientific Research” (KPKVK 6541230).

Translated from Prikladnaya Mekhanika, Vol. 57, No. 3, pp. 3–17, May–June 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, A.Y., Malanchuk, V.A., Sorochenko, G.V. et al. Application of the Inhomogeneous Elasticity Theory to the Description of the Mechanical State of a Single-Rooted Tooth*. Int Appl Mech 57, 249–262 (2021). https://doi.org/10.1007/s10778-021-01077-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-021-01077-3

Keywords

Navigation