Skip to main content
Log in

The Method for Autonomous Determination of Longitude and Latitude of a Moving Object

  • Published:
International Applied Mechanics Aims and scope

The method for determination of the longitude and latitude of a moving object is presented. This method is based on measuring the vehicle’s angular rate using an inertial measuring unit that consists of, at least, three gyroscopes (precision angular rate sensors). The latitude determination does not require integration of accelerometer output signals, whereas the longitude determination requires only a single integration of the gyroscope output signals. The longitude and latitude measurement error models are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Koshliakov, “On the equations for the location of a moving object,” Appl. Math.&Mech., 6, 1135–1137 (1964).

  2. N. T. Kuzovkov and O. S. Salychev, Inertial Navigation and Optimal Filtering [in Russian], Mashinostroenie, Moscow, (1982).

  3. V. V. Matveev and V. Ya. Raspopov, Fundamentals of Building Strapdown Inertial Navigation Systems [in Russian], GNC RF OAO Concern TsNII Elektropribor, Sankt Petersburg (2009).

  4. V. V. Meleshko and O. I. Nesterenko, Strapdown Inertial Navigation Systems [in Russian], Polymed-Service, Kirovohrad (2011).

  5. M. V. Nekrasova and V. B. Uspenskiy, “Determination of the requirements for the calibration accuracy of the meter unit as part of the accelerometric SINS,” Aviats. Kosmich. Tekhn. Tekhnol., 119, No. 2, 63–68 (2015).

    Google Scholar 

  6. I. N. Rosenberg, S. V. Sokolov, V. I. Umanskiy, and V. A. Pogorelov, Theoretical Foundations of Close Integration of Inertial-Satellite Navigation Systems [in Russian], Fizmatlit, Moscow (2018).

  7. V. B. Uspenskiy and M. V. Nekrasova, “Measuring the acceleration and angular velocity of a rigid body with the use of a redundant accelerometer system,” Visn. Nats. Tekhn. Univ. KhPI, Ser. Dinam. Mitsn. Mashin, 63, 138–145 (2011).

  8. V. V. Avrutov, “Autonomous determination of initial latitude with an inertial measuring unit,” Int. Appl. Mech., 54, No. 5, 594–599 (2018).

    Article  MathSciNet  Google Scholar 

  9. V. V. Avrutov, D.V. Buhaiov, and V.V. Meleshko, “Gyrocompassing mode of the attitude and heading reference system,” in: Proc. of the IEEE/APUAVD-2017, Kyiv (2017), pp. 134–138.

  10. A. R. Baziar, M. Moazedi, and M. R. Mosavi, “Analysis of single frequency GPS receiver under delay and combining spoofing algorithm,” J. Wireless Personal Communications, 83, No. 3, 1955–1970 (2015).

    Article  Google Scholar 

  11. J. H. Chen, S. C. Lee, and D. B. DeBra, “Gyroscope free strapdown inertial measurement unit by six linear accelerometers,” J. Guid. Contr. Dynam., 17, No. 2, 286–290 (1994).

    Article  Google Scholar 

  12. R. Hanson, “Using multiple MEMS IMUs to Form a Distributed Inertial Measurement Unit,” Master’s Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (2005), 107 p.

  13. I. Klein, “Analytic error assessment of gyro-free INS,” J. Appl. Geodesy, 9, No. 1, 49–62 (2015).

    Article  Google Scholar 

  14. V. B. Larin and A. A. Tunik, “On inertial-navigation system without angular-rate sensors,” Int. Appl. Mech., 49, No. 4, 488–500 (2013).

    Article  Google Scholar 

  15. U. Nusbaum and I. Klein, “Control theoretic approach to gyro-free inertial navigation systems,” IEEE AES Magazine special issue on navigation, 38–45 (2017).

  16. G. T. Schmidt, “GPS based navigation systems in difficult environments,” Gyroscopy Navig., 10, No. 2, 41–53 (2019).

    Article  Google Scholar 

  17. A. R. Schuler, A. Grammatikos, and K. A. Fegley, “Measuring rotational motion with linear accelerometers,” IEEE Trans. on Aerospace and Electronic Systems, AES-3, No. 3, 465–471 (1967).

    Article  Google Scholar 

  18. C. W. Tan, S. Park, K. Mostov, and P. Varaiya, “Design of gyroscope-free navigation systems,” in: IEEE Intelligent Transportation Systems Conf. Proc. (2001), pp. 286–291.

  19. C. W. Tan and S. Park, “Design of accelerometer based inertial navigation systems,” Instrumentation and Measurement – IEEE Trans., 54, 2520–2530 (2005).

    Article  Google Scholar 

  20. D. H. Titterton and J. L. Weston, “Strapdown inertial navigation technology,” Navigation and Avionics, IEE Radar, Sonar, 17, 558 (2004).

  21. E. Vaknin and I. Klein, “Coarse leveling of gyro-free INS,” Gyroscopy Navig., 7, 145–151 (2016).

    Article  Google Scholar 

  22. Z. C. Wu, Z. F. Wang, and Y. Ge, “Gravity based online calibration for monolithic triaxial accelerometers’ gain and offset drift,” in: Proc. 4th World Congr. Intell. Control Autom. (2002), pp. 2171–2175.

  23. H. Zemer, R. Sarel, and I. Klein, “Feasibility study of a partial gyro-free inertial navigation system mounted on a ground robot,” in: Proc. 27th Mediterranean Conf. on Control and Automation (2019), pp. 524–529.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.V. Avrutov.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 57, No. 1, pp. 115–120, January–February 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avrutov, V., Ryzhkov, L. The Method for Autonomous Determination of Longitude and Latitude of a Moving Object. Int Appl Mech 57, 97–102 (2021). https://doi.org/10.1007/s10778-021-01056-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-021-01056-8

Keywords

Navigation