Skip to main content
Log in

Boundedness of Solutions of Conformable Fractional Equations of Perturbed Motion*

  • Published:
International Applied Mechanics Aims and scope

The results of analyzing the boundedness of the solutions of nonlinear systems with conformable fractional derivative of the state vector are discussed. The solutions are estimated and their boundedness conditions are established using the method of integral inequalities. Systems subject to constant perturbations are considered as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Martynyuk, “Stability of conformable fractional systems of equations of perturbed motion,” Dop. NAN Ukrainy, No. 6, 9–16 (2018).

  2. T. Abdeljawad, “On conformable fractional calculus,” J. Comput. Appl. Math., 279, 57–66 (2015).

    Article  MathSciNet  Google Scholar 

  3. R. L. Bagley and P. J. Torvik, “On the appearance of the fractional derivatives in the behaviour of real materials,” J. Appl. Mech., 41, 294–298 (1984).

    MATH  Google Scholar 

  4. T. A. Burton, Liapunov Theory for Integral Equations with Singular Kernels and Fractional Differential Equations, Port Angeles: CreateSpace Independent Publishing Platform (2012).

  5. R. Caponetto, G. Dongola, L. Fortuna, and I. Petras, Fractional Order Systems: Modeling and Control Applications. World Scientific Series on Nonlinear Science, Ser. A, 72, World Scientific, Singapore (2010).

  6. M. Caputo, Elasticita e Dissipazione, Zanichelli, Bologna (1969).

    Google Scholar 

  7. Y. Q. Chen, I. Petras, and D. Xue, “Fractional order control—A tutorial,” in: Proc. IEEE American Contr. Conf., St-Louis, USA (2009), pp. 1397–1411.

  8. I. N’Doye, Generalization du lemme de Gronwall–Bellman pour la stabilization des systemes fractionnaires, PhD These, Université Henri Poincaré, Nancy I (2011).

  9. U. N. Katugampola, A New Fractional Derivative with Classical Properties, arXiv:1410.6535 v2 [math CA], 8 November (2014).

  10. A. Kilbas, M. H. Srivastava, and J. J. Trujillo, Theory and Application on Fractional Differential Equations, North Holland, Amsterdam (2006).

    MATH  Google Scholar 

  11. M. Khalil Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” J. Comput. Appl. Math., 264, 65–70 (2014).

    Article  MathSciNet  Google Scholar 

  12. V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publisher, Cambridge (2009).

    MATH  Google Scholar 

  13. V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Birkhauser, Berlin (2015).

    Book  Google Scholar 

  14. A. A. Martynyuk, “On the stability of a system of equations with fractional derivatives with respect to two measures,” J. Math. Sci., 217, 468–475 (2016).

    Article  MathSciNet  Google Scholar 

  15. A. A. Martynyuk and I. M. Stamova, “Fractional-like derivative of Lyapunov-type functions and applications to the stability analysis of motion,” Electronic J. Diff. Eqs., No. 62, 1–12 (2018).

    MATH  Google Scholar 

  16. A. A. Martynyuk, I. M. Stamova, and Yu. A. Martynyuk-Chernienko, “Stability analysis of the set of trajectories for differential equations with fractional dynamics,” Eur. Phys. J. Special Topics, 226, 3609–3637 (2017).

    Article  ADS  Google Scholar 

  17. A. A. Martynyuk, G. Stamov, and I. M. Stamova, “Practical stability analysis with respect to manifolds and boundedness of differential equations with fractional-like derivatives,” Rocky Mountain J. Math., 49, No. 1, 211–233 (2019).

    Article  MathSciNet  Google Scholar 

  18. A. A. Martynyu, G. Stamov, and I. M. Stamov, “Integral estimates of the solutions of fractional-like equations of perturbed motion,” Nonlinear Analysis: Modelling and Control, 24, No. 1, 138–149 (2019).

    Article  MathSciNet  Google Scholar 

  19. A. A. Martynyuk, G. Tr. Stamov, and I. M. Stamova, “Fractional-like Hukuhara derivatives in the theory of set-valued differential equations,” Chaos, Solitons and Fractals, 131, 109487 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. A. Martynyuk, G. Tr. Stamov, and I. M. Stamova, “Impulsive fractional-like differential equations: practical stability and boundedness with respect to h-manifolds,” Fractal and Fractional (MDPI), 3, No. 50, 1–16 (2019).

    MATH  Google Scholar 

  21. A. A. Martynyuk, D. Ya. Khusainov, and V. A. Chernienko, “Constructive estimation of the Lyapunov function for quadratic nonlinear systems,” Int. Appl. Mech., 54, No. 3, 346–357 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. A. Martynyuk and V. A. Chernienko, “Sufficient conditions of stability of motion of polynomial systems,” Int. Appl. Mech., 56, No. 1, 13–21 (2020).

    Article  ADS  Google Scholar 

  23. I. Podlybny, Fractional Differential Equations, Academic Press, London (1999).

    Google Scholar 

  24. V. H. Schmidt and J. E. Drumheller, “Dielectric properties of lithium hydrazinium sulfate,” Phys. Rev., B, No. 4, 4582–4597 (1971).

  25. M. Soula, Etude du Comportement Mecanique des Materiaux Viscoelastiques par les Derivees Fractionnaires, PhD Thesis, Conservatoire National des Arts et Metiers de Paris (1996).

  26. J. V. C. Sousa and E. C. Oliveira, “A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties,” Int. J. Anal. Appl., 1–16 (2017).

  27. G. Stamov, I. Stamova, A. A. Martynyuk, and T. Stamov, “Design and practical stability of a new class of impulsive fractional-like neural networks,” Entropy (MDPI), 22, No. 3, 337 (2020).

    Article  ADS  Google Scholar 

  28. E. Unal and A. Gokdogan, “Solution of conformable fractional ordinary differential equations via differential transform method,” Optik – Int. J. for Light and Electron Optics, 128, 264–273 (2017).

    Article  Google Scholar 

  29. T. Yoshizawa, Stability Theory by Liapunov’s Second Method, Publ. Math. Soc., Tokyo (1966).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Martynyuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 56, No. 5, pp. 56–64, September–October 2020.

This study was sponsored by the budget program “Support for Priority Areas of Scientific Research” (KPKVK 6541230).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynyuk, A.A., Martynyuk-Chernienko, Y.A. Boundedness of Solutions of Conformable Fractional Equations of Perturbed Motion*. Int Appl Mech 56, 572–580 (2020). https://doi.org/10.1007/s10778-020-01035-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-020-01035-5

Keywords

Navigation